Difference between revisions of "2025 AIME II Problems/Problem 1"

(Solution 2)
m
Line 4: Line 4:
 
==Solution 1==
 
==Solution 1==
 
<asy>
 
<asy>
 +
pair A,B,C,D,E,F,G;
 
A=(0,0);
 
A=(0,0);
 
label("$A$", A, S);
 
label("$A$", A, S);
Line 25: Line 26:
  
 
Let <math>AB=a</math>, <math>BC=b</math>, <math>CD=c</math>, <math>DE=d</math> and <math>EF=e</math>. Then we know that <math>a+b+c+d+e</math>=73, <math>a+b=26</math>, <math>b+c=22</math>, <math>c+d=31</math> and <math>d+e=33</math>. From this we can easily deduce <math>c=14</math> and <math>a+e=34</math> thus <math>b+c+d=39</math>. Using Heron's formula we can calculate the area of <math>\triangle{CGD}</math> to be <math>\sqrt{(42)(28)(12)(2)}=168</math>, and since the base of <math>\triangle{BGE}</math> is <math>\frac{39}{14}</math> of that of <math>\triangle{CGD}</math>, we calculate the area of <math>\triangle{BGE}</math> to be <math>168\times \frac{39}{14}=\boxed{468}</math>.
 
Let <math>AB=a</math>, <math>BC=b</math>, <math>CD=c</math>, <math>DE=d</math> and <math>EF=e</math>. Then we know that <math>a+b+c+d+e</math>=73, <math>a+b=26</math>, <math>b+c=22</math>, <math>c+d=31</math> and <math>d+e=33</math>. From this we can easily deduce <math>c=14</math> and <math>a+e=34</math> thus <math>b+c+d=39</math>. Using Heron's formula we can calculate the area of <math>\triangle{CGD}</math> to be <math>\sqrt{(42)(28)(12)(2)}=168</math>, and since the base of <math>\triangle{BGE}</math> is <math>\frac{39}{14}</math> of that of <math>\triangle{CGD}</math>, we calculate the area of <math>\triangle{BGE}</math> to be <math>168\times \frac{39}{14}=\boxed{468}</math>.
 +
 +
~quick Asymptote fix by eevee9406
  
 
== Solution 2 (Law of Cosines)==
 
== Solution 2 (Law of Cosines)==

Revision as of 22:03, 13 February 2025

Problem

Six points $A, B, C, D, E,$ and $F$ lie in a straight line in that order. Suppose that $G$ is a point not on the line and that $AC=26, BD=22, CE=31, DF=33, AF=73, CG=40,$ and $DG=30.$ Find the area of $\triangle BGE.$

Solution 1

[asy] pair A,B,C,D,E,F,G; A=(0,0); label("$A$", A, S); B=(1.5,0); label("$B$", B, S); C=(2.9,0); label("$C$", C, S); D=(4.2,0); label("$D$", D, S); E=(5.3,0); label("$E$", E, S); F=(6.5,0); label("$F$", F, S); G=(3.7,3); label("$G$", G, N);  draw(A--B--C--D--E--F); draw(C--G--D); draw(B--G--E); [/asy]

Let $AB=a$, $BC=b$, $CD=c$, $DE=d$ and $EF=e$. Then we know that $a+b+c+d+e$=73, $a+b=26$, $b+c=22$, $c+d=31$ and $d+e=33$. From this we can easily deduce $c=14$ and $a+e=34$ thus $b+c+d=39$. Using Heron's formula we can calculate the area of $\triangle{CGD}$ to be $\sqrt{(42)(28)(12)(2)}=168$, and since the base of $\triangle{BGE}$ is $\frac{39}{14}$ of that of $\triangle{CGD}$, we calculate the area of $\triangle{BGE}$ to be $168\times \frac{39}{14}=\boxed{468}$.

~quick Asymptote fix by eevee9406

Solution 2 (Law of Cosines)

We need to solve the lengths of AB, BC, CD, DE and EF. Let AB = a, BC = b, CD = c, DE = d and EF = e a + b = 26, b + c = 22, c + d = 31, d + e = 33, a + b + c + d + e = 73 Substituting a + b = 26 and d + e = 33 into a + b + c + d + e = 73, c = 14 Therefore, we get a = 18, b = 8, c = 14, d = 17 and e = 16 Noting that triangle CDG has CD = 14, CG = 40 and DG = 30, 14^2 = 40^2 + 30^2 - 2 * 40 * 30 * cos(angle CGD) 2 * 40 * 30 * cos(angle CGD) = 2500 - 196 = 2304 cos(angle CGD) = 24/25, therefore sin(angle CGD) The area for triangle CDG = 1/2 * 40 * 30 * 7/25 = 168 Noting that the height of the triangle CDG would be the exact same height as the triangle as triangle BGE, the ratio of the length would be the ratio of area. Therefore, the answer would be given by 168 * 39 / 14 = 468

(Feel free to correct any latex and formats) ~Mitsuihisashi14

See also

2025 AIME II (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png