Difference between revisions of "2025 AMC 8 Problems/Problem 2"

(Video Solution 5 by Thinking Feet)
(Solution 1)
Line 10: Line 10:
  
 
<math>\textbf{(A)}\ 1,423 \qquad \textbf{(B)}\ 10,423 \qquad \textbf{(C)}\ 14,023 \qquad \textbf{(D)}\ 14,203 \qquad \textbf{(E)}\ 14,230</math>
 
<math>\textbf{(A)}\ 1,423 \qquad \textbf{(B)}\ 10,423 \qquad \textbf{(C)}\ 14,023 \qquad \textbf{(D)}\ 14,203 \qquad \textbf{(E)}\ 14,230</math>
 
== Solution 1 ==
 
 
The first hieroglyph is worth <math>10,000</math>, the next 4 are worth <math>100 \cdot 4 = 400</math>, the next <math>2</math> are worth <math>10 \cdot 2 = 20</math>, and the last <math>3</math> are worth <math>1 \cdot 3 = 3</math>. Therefore, the answer is <math>10,000 + 400 + 20 + 3 = \textbf{(B)}\ 10,423</math>
 
 
~ Sigmacuber
 
  
 
== Video Solution 1 (Detailed Explanation) 🚀⚡📊 ==
 
== Video Solution 1 (Detailed Explanation) 🚀⚡📊 ==

Revision as of 11:34, 2 February 2025

Problem

The table below shows the ancient Egyptian hieroglyphs that were used to represent different numbers.

Mathh.PNG

For example, the number $32$ was represented by the hieroglyphs $\cap \cap \cap ||$. What number is represented by the following combination of hieroglyphs?

Amc8 2025 prob 2 pic.PNG

$\textbf{(A)}\ 1,423 \qquad \textbf{(B)}\ 10,423 \qquad \textbf{(C)}\ 14,023 \qquad \textbf{(D)}\ 14,203 \qquad \textbf{(E)}\ 14,230$

Video Solution 1 (Detailed Explanation) 🚀⚡📊

Youtube Link ⬇️

https://youtu.be/j20JsyEXKcs

~ ChillGuyDoesMath

Video Solution 2 by SpreadTheMathLove

https://www.youtube.com/watch?v=jTTcscvcQmI

Video Solution 3 (A Clever Explanation You’ll Get Instantly)

https://youtu.be/VP7g-s8akMY?si=eptV4vO-YstwSQy1&t=105 ~hsnacademy

Video Solution 4 by Daily Dose of Math

https://youtu.be/rjd0gigUsd0

~Thesmartgreekmathdude

Video Solution 5 by Thinking Feet

https://youtu.be/PKMpTS6b988

Video Solution by CoolMathProblems

https://youtu.be/biB8GlB54oI

See Also

2025 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png