Difference between revisions of "2022 AMC 10A Problems/Problem 18"

m (Solution 4 (Simple))
m (Solution 4 (Simple))
Line 55: Line 55:
 
We recognize that the reflection makes it turn clockwise. So, each time it turns the step degree. Looking at the answer choices, the closest number to make a multiple of 360 is 359, which leads us to our answer.  
 
We recognize that the reflection makes it turn clockwise. So, each time it turns the step degree. Looking at the answer choices, the closest number to make a multiple of 360 is 359, which leads us to our answer.  
  
This is because (1+359)359/2 = something with 360, so we return it to the original spot.
+
This is because <math>\frac{(1+359)359}{2}</math> = something with 360, so we return it to the original spot.
  
 
==Video Solution==
 
==Video Solution==

Revision as of 17:01, 1 November 2024

The following problem is from both the 2022 AMC 10A #18 and 2022 AMC 12A #18, so both problems redirect to this page.

Problem

Let $T_k$ be the transformation of the coordinate plane that first rotates the plane $k$ degrees counterclockwise around the origin and then reflects the plane across the $y$-axis. What is the least positive integer $n$ such that performing the sequence of transformations $T_1, T_2, T_3, \cdots, T_n$ returns the point $(1,0)$ back to itself?

$\textbf{(A) } 359 \qquad \textbf{(B) } 360 \qquad \textbf{(C) } 719 \qquad \textbf{(D) } 720 \qquad \textbf{(E) } 721$

Solution 1

Let $P=(r,\theta)$ be a point in polar coordinates, where $\theta$ is in degrees.

Rotating $P$ by $k^{\circ}$ counterclockwise around the origin gives the transformation $(r,\theta)\rightarrow(r,\theta+k^{\circ}).$ Reflecting $P$ across the $y$-axis gives the transformation $(r,\theta)\rightarrow(r,180^{\circ}-\theta).$ Note that \begin{align*} T_k(P)&=(r,180^{\circ}-\theta-k^{\circ}), \\ T_{k+1}(T_k(P)) &= (r,\theta -1^{\circ}). \end{align*} We start with $(1,0^{\circ})$ in polar coordinates. For the sequence of transformations $T_1, T_2, T_3, \cdots, T_k,$ it follows that

  • After $T_1,$ we have $(1,179^{\circ}).$
  • After $T_2,$ we have $(1,-1^{\circ}).$
  • After $T_3,$ we have $(1,178^{\circ}).$
  • After $T_4,$ we have $(1,-2^{\circ}).$
  • After $T_5,$ we have $(1,177^{\circ}).$
  • After $T_6,$ we have $(1,-3^{\circ}).$
  • ...
  • After $T_{2k-1},$ we have $(1,180^{\circ}-k^{\circ}).$
  • After $T_{2k},$ we have $(1,-k^{\circ}).$

The least such positive integer $k$ is $180.$ Therefore, the least such positive integer $n$ is $2k-1=\boxed{\textbf{(A) } 359}.$

~MRENTHUSIASM

Solution 2

Note that since we're reflecting across the $y$-axis, if the point ever makes it to $(-1,0)$ then it will flip back to the original point. Note that after $T_1$ the point will be $1$ degree clockwise from the negative $x$-axis. Applying $T_2$ will rotate it to be $1$ degree counterclockwise from the negative $x$-axis, and then flip it so that it is $1$ degree clockwise from the positive $x$-axis. Therefore, after every $2$ transformations, the point rotates $1$ degree clockwise. To rotate it so that it will rotate $179$ degrees clockwise will require $179 \cdot 2 = 358$ transformations. Then finally on the last transformation, it will rotate on to $(-1,0)$ and then flip back to its original position. Therefore, the answer is $358+1 = 359 = \boxed{\textbf{(A) } 359}$.

~KingRavi

Solution 3

In degrees:

Starting with $n=0$, the sequence goes ${0}\rightarrow {179}\rightarrow {359}\rightarrow {178}\rightarrow {358}\rightarrow {177}\rightarrow {357}\rightarrow\cdots.$

We see that it takes $2$ steps to downgrade the point by $1^{\circ}$. Since the $1$st point in the sequence is ${179}$, the answer is $1+2(179)=\boxed{\textbf{(A) } 359}.$

Solution 4 (Simple)

We recognize that the reflection makes it turn clockwise. So, each time it turns the step degree. Looking at the answer choices, the closest number to make a multiple of 360 is 359, which leads us to our answer.

This is because $\frac{(1+359)359}{2}$ = something with 360, so we return it to the original spot.

Video Solution

https://youtu.be/QQrsKTErJn8

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Video Solution (Simple and Fun!!!)

https://youtu.be/7yAh4MtJ8a8?si=2UC_9X7DjkL8UW5C&t=4968

~Math-X

See also

2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2022 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png