Difference between revisions of "2023 AMC 12A Problems/Problem 3"

(Solution 4)
(Solution 5 (Under 10 seconds, ignore the first paragraph))
Line 26: Line 26:
 
The original way of BlueShardow
 
The original way of BlueShardow
  
Since the perfect squares have to be divisible by 5, then we know it has to be 5 times some number squared (5*x)^2. With this information, you can fique out every single product of 5 and another number squared to count how many perfect squares are divisible by 5 that are less than 2023. (EX: 5^2 = 25, 10^2 = 100, ... 40^2 = 1600) With this you get a max of 40^2, or 8 solutions. PLEASE DO NOT do this problem this way, it takes way too much time.
+
Since the perfect squares have to be divisible by 5, then we know it has to be 5 times some number squared (5*x)^2. With this information, you can fique out every single product of 5 and another number squared to count how many perfect squares are divisible by 5 that are less than 2023. (EX: 5^2 = 25, 10^2 = 100, ... 40^2 = 1600) With this you get a max of 40^2, or <math>\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}</math> solutions. PLEASE DO NOT do this problem this way, it takes way too much time.
  
 
~BlueShardow
 
~BlueShardow

Revision as of 01:16, 7 July 2024

The following problem is from both the 2023 AMC 10A #3 and 2023 AMC 12A #3, so both problems redirect to this page.

Problem

How many positive perfect squares less than $2023$ are divisible by $5$?

$\textbf{(A) } 8 \qquad\textbf{(B) }9 \qquad\textbf{(C) }10 \qquad\textbf{(D) }11 \qquad\textbf{(E) } 12$

Solution 2 (slightly refined)

Since $\left \lfloor{\sqrt{2023}}\right \rfloor = 44$, there are $\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}$ perfect squares less than 2023.

~not_slay

Solution 3

Since $5$ is prime, each solution must be divisible by $5^2=25$. We take $\left \lfloor{\frac{2023}{25}}\right \rfloor = 80$ and see that there are $\boxed{\textbf{(A) 8}}$ positive perfect squares no greater than $80$.

~jwseph

Solution 4

~kyogrexu (minor edits by vadava_lx) ~ It was just a worse way of describing solution 5, hence removed by ~ Dextrik

Solution 5 (Under 10 seconds, ignore the first paragraph)

The original way of BlueShardow

Since the perfect squares have to be divisible by 5, then we know it has to be 5 times some number squared (5*x)^2. With this information, you can fique out every single product of 5 and another number squared to count how many perfect squares are divisible by 5 that are less than 2023. (EX: 5^2 = 25, 10^2 = 100, ... 40^2 = 1600) With this you get a max of 40^2, or $\left \lfloor{\frac{44}{5}}\right \rfloor = \boxed{\textbf{(A) 8}}$ solutions. PLEASE DO NOT do this problem this way, it takes way too much time.

~BlueShardow

The way of BlueShardow refined:

All it takes is to recall that 45 squared is 2025, and 45 is 5 x 9. So all the squares of 5 x 1, 5 x 2, 5 x 3 so on are divisible by 5. So the answer is 8. It can be done even if one does not remember that 45 squared is 2025, all it takes is intuition. One can easily see mentally that 5 x 8 that is 40 squared is 1600, and then one has to do just one more computation and see that 5 x 9 that is 45 squared exceeds 2023, so the answer is 8. BlueShardow's method is the best but he did not realize it.

~edit by RobinDaBank

Video Solution (easy to understand) by Power Solve

https://youtu.be/YXIH3UbLqK8?si=aIYHWEU82uUu21fQ&t=165

Video Solution by Math-X (First understand the problem!!!)

https://youtu.be/cMgngeSmFCY?si=E0a8wvcNRoeg2A3X&t=422

Video Solution by CosineMethod [🔥Fast and Easy🔥]

https://www.youtube.com/watch?v=wNH6O8D-7dY

Video Solution

https://youtu.be/w7RBPIatRNE

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)


Video Solution (🚀 Just 2 min 🚀)

https://youtu.be/Z3fmCkuHG3c

~Education, the Study of Everything

Video Solution (easy to digest) by Power Solve

https://www.youtube.com/watch?v=8huvzWTtgaU

Video Solution (Easy to Understand) by DR.GOOGLE (YT: Pablo's Math)

https://youtu.be/BNhRdnOu-jI

See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png