Difference between revisions of "2023 AMC 12A Problems/Problem 6"

(Solution)
(Solution 2)
Line 28: Line 28:
 
<math>log_2(x1)+log_2(12-x1)=log2(16)</math>
 
<math>log_2(x1)+log_2(12-x1)=log2(16)</math>
  
<math>log_2((12x1-x1^2/16))=0</math>
+
<math>log_2((12x_1-x_1^2/16))=0</math>
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2023|ab=A|num-b=5|num-a=7}}
 
{{AMC12 box|year=2023|ab=A|num-b=5|num-a=7}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 23:20, 9 November 2023

Problem

Points $A$ and $B$ lie on the graph of $y=\log_{2}x$. The midpoint of $\overline{AB}$ is $(6, 2)$. What is the positive difference between the $x$-coordinates of $A$ and $B$?

$\textbf{(A)}~2\sqrt{11}\qquad\textbf{(B)}~4\sqrt{3}\qquad\textbf{(C)}~8\qquad\textbf{(D)}~4\sqrt{5}\qquad\textbf{(E)}~9$

Solution

Let $A(6+m,2+n)$ and $B(6-m,2-n)$, since $(6,2)$ is their midpoint. Thus, we must find $2m$. We find two equations due to $A,B$ both lying on the function $y=\log_{2}x$. The two equations are then $\log_{2}(6+m)=2+n$ and $\log_{2}(6-m)=2-n$. Now add these two equations to obtain $\log_{2}(6+m)+\log_{2}(6-m)=4$. By logarithm rules, we get $\log_{2}((6+m)(6-m))=4$. By raising 2 to the power of both sides, we obtain $(6+m)(6-m)=16$. We then get \[36-m^2=16 \rightarrow m^2=20 \rightarrow m=2\sqrt{5}\]. Since we're looking for $2m$, we obtain $2*2\sqrt{5}=\boxed{\textbf{(D) }4\sqrt{5}}$

~amcrunner (yay, my first AMC solution)

Solution 2

Bascailly, we can use the midpoint formula

assume that the points are $(x_1,y_1)$ and $(x_2,y_2)$

assume that the points are ($x_1$,$\log_{2}(x_1)$) and ($x_2$,$\log_{2}(x_2)$)


midpoint formula is ($(x_1+x_2)/2$,($(\log_{2}(x_1)+\log_{2}(x_2))/2$


thus $x_1+x_2=12$ $x_2=12-x_1$ and $log_2(x_1)+log_2(x_2)=4$ $log_2(x1)+log_2(12-x1)=log2(16)$

$log_2((12x_1-x_1^2/16))=0$

See Also

2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png