Difference between revisions of "2022 AIME II Problems/Problem 3"
(→Video Solution (Mathematical Dexterity)) |
Numerophile (talk | contribs) (→Solution 1) |
||
Line 10: | Line 10: | ||
Since the volume is <math>54 = \frac{1}{3} \cdot S \cdot h = \frac{1}{3} \cdot 6^2 \cdot h</math>, where <math>h=\frac{9}{2}</math> is the height of this pyramid, we have: <math>l^2=\left(\frac{9}{2}-l\right)^2+\left(3\sqrt{2}\right)^2</math> according to the Pythagorean theorem. | Since the volume is <math>54 = \frac{1}{3} \cdot S \cdot h = \frac{1}{3} \cdot 6^2 \cdot h</math>, where <math>h=\frac{9}{2}</math> is the height of this pyramid, we have: <math>l^2=\left(\frac{9}{2}-l\right)^2+\left(3\sqrt{2}\right)^2</math> according to the Pythagorean theorem. | ||
− | Solve this equation will give us <math>l = \frac{17}{4},</math> therefore <math>m+n=\boxed{ | + | Solve this equation will give us <math>l = \frac{17}{4},</math> therefore <math>m+n=\boxed{021}.</math> |
~DSAERF-CALMIT (https://binaryphi.site) | ~DSAERF-CALMIT (https://binaryphi.site) |
Revision as of 02:08, 30 January 2023
Contents
Problem
A right square pyramid with volume has a base with side length The five vertices of the pyramid all lie on a sphere with radius , where and are relatively prime positive integers. Find .
Solution 1
Although I can't draw the exact picture of this problem, but it is quite easy to imagine that four vertices of the base of this pyramid is on a circle (Radius ). Since all five vertices are on the sphere, the distances of the spherical center and the vertices are the same: . Because of the symmetrical property of the pyramid, we can imagine that the line of the apex and the (sphere's) center will intersect the square at the (base's) center.
Since the volume is , where is the height of this pyramid, we have: according to the Pythagorean theorem.
Solve this equation will give us therefore
~DSAERF-CALMIT (https://binaryphi.site)
Solution 2
To start, we find the height of the pyramid. By the volume of a pyramid formula, we have Next, let us find the length of the non-base sides of the pyramid. By the Pythagorean Theorem, noting that the distance from one vertex of the base to the center of the base is , we have Taking the cross section of the pyramid and transforming the problem into -d, it suffices to find the radius of the circumcircle of a triangle of side lengths , , . This turns out to be easy by the formula , and through computing this value (the work has been left out) we find that , so our answer is .
~A1001
Video Solution (Mathematical Dexterity)
https://www.youtube.com/watch?v=UJAYW6YNFVU
Video Solution by Power of Logic
See Also
2022 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.