Difference between revisions of "2006 Cyprus MO/Lyceum/Problem 7"
(sol) |
I like pie (talk | contribs) (Standardized answer choices; minor edits) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | + | [[Image:2006 CyMO-7.PNG|250px|right]] | |
− | [[Image:2006 CyMO-7.PNG|250px]] | ||
− | |||
In the figure, <math>AB\Gamma</math> is an equilateral triangle and <math>A\Delta \perp B\Gamma</math>, <math>\Delta E\perp A\Gamma</math>, <math>EZ\perp B\Gamma</math>. If <math>EZ=\sqrt{3}</math>, then the length of the side of the triangle <math>AB\Gamma</math> is | In the figure, <math>AB\Gamma</math> is an equilateral triangle and <math>A\Delta \perp B\Gamma</math>, <math>\Delta E\perp A\Gamma</math>, <math>EZ\perp B\Gamma</math>. If <math>EZ=\sqrt{3}</math>, then the length of the side of the triangle <math>AB\Gamma</math> is | ||
− | + | <math>\mathrm{(A)}\ \frac{3\sqrt{3}}{2}\qquad\mathrm{(B)}\ 8\qquad\mathrm{(C)}\ 4\qquad\mathrm{(D)}\ 3\qquad\mathrm{(E)}\ 9</math> | |
− | + | ==Solution== | |
+ | <math>\triangle EZ\Gamma</math> is a <math>30-60-90</math> [[right triangle]], so <math>Z\Gamma = \frac{\sqrt{3}}{\sqrt{3}} = 1</math>. Also <math>\angle ZE\Delta = 90 - 30 = 60^{\circ}</math>, so <math>\triangle ZE\Delta</math> also is a <math>30-60-90 \triangle</math>. | ||
− | + | Thus, <math>\Delta Z = \sqrt{3} \cdot \sqrt{3} = 3</math>. Adding, <math>\Delta Z + Z\Gamma = 4</math>, and a side of <math>\triangle AB\Gamma</math> is <math>2 \Delta \Gamma = 8\ \mathrm{(B)}</math>. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==See also== | ==See also== |
Latest revision as of 09:42, 27 April 2008
Problem
In the figure, is an equilateral triangle and , , . If , then the length of the side of the triangle is
Solution
is a right triangle, so . Also , so also is a .
Thus, . Adding, , and a side of is .
See also
2006 Cyprus MO, Lyceum (Problems) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 |