Difference between revisions of "2022 AMC 10A Problems/Problem 17"

(Solution)
Line 9: Line 9:
 
==Solution==
 
==Solution==
  
Notice that <math>0.\overline{abc} = \frac{abc}{999} </math>and <math>0.\overline{x} = \frac{x}{9}</math>. From this, we can write:
+
We rewrite the given equation, then rearrange:
 
+
<cmath>\begin{align*}
 
+
\frac{100a+10b+c}{999} &= \frac13\left(\frac a9 + \frac b9 + \frac c9\right) \\
Solution in progress
+
100a+10b+c &= 37a + 37b + 37c \\
 
+
63a &= 27b+36c \\
~KingRavi
+
7a &= 3b+4c.
 +
\end{align*}</cmath>
 +
~MRENTHUSIASM
  
 
== See Also ==
 
== See Also ==

Revision as of 01:34, 12 November 2022

Problem

How many three-digit positive integers $\underline{a}$ $\underline{b}$ $\underline{c}$ are there whose nonzero digits $a,b,$ and $c$ satisfy \[0.\overline{\underline{a}~\underline{b}~\underline{c}} = \frac{1}{3} (0.\overline{a} + 0.\overline{b} + 0.\overline{c})?\] (The bar indicates repetition, thus $0.\overline{\underline{a}~\underline{b}~\underline{c}}$ in the infinite repeating decimal $0.\underline{a}~\underline{b}~\underline{c}~\underline{a}~\underline{b}~\underline{c}~\cdots$

$\textbf{(A) } 9 \qquad \textbf{(B) } 10 \qquad \textbf{(C) } 11 \qquad \textbf{(D) } 13 \qquad \textbf{(E) } 14$

Solution

We rewrite the given equation, then rearrange: \begin{align*} \frac{100a+10b+c}{999} &= \frac13\left(\frac a9 + \frac b9 + \frac c9\right) \\ 100a+10b+c &= 37a + 37b + 37c \\ 63a &= 27b+36c \\ 7a &= 3b+4c. \end{align*} ~MRENTHUSIASM

See Also

2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png