Difference between revisions of "2022 AMC 10A Problems/Problem 5"
(Created page with "==Problem 5== Square <math>ABCD</math> has side length <math>1</math>. Points <math>P</math>, <math>Q</math>, <math>R</math>, and <math>S</math> each lie on a side of <math>A...") |
MRENTHUSIASM (talk | contribs) |
||
Line 1: | Line 1: | ||
− | ==Problem | + | ==Problem== |
Square <math>ABCD</math> has side length <math>1</math>. Points <math>P</math>, <math>Q</math>, <math>R</math>, and <math>S</math> each lie on a side of <math>ABCD</math> such that <math>APQCRS</math> is an equilateral convex hexagon with side length <math>s</math>. What is <math>s</math>? | Square <math>ABCD</math> has side length <math>1</math>. Points <math>P</math>, <math>Q</math>, <math>R</math>, and <math>S</math> each lie on a side of <math>ABCD</math> such that <math>APQCRS</math> is an equilateral convex hexagon with side length <math>s</math>. What is <math>s</math>? | ||
Line 5: | Line 5: | ||
<math>\textbf{(A) } \frac{\sqrt{2}}{3} \qquad \textbf{(B) } \frac{1}{2} \qquad \textbf{(C) } 2 - \sqrt{2} \qquad \textbf{(D) } 1 - \frac{\sqrt{2}}{4} \qquad \textbf{(E) } \frac{2}{3}</math> | <math>\textbf{(A) } \frac{\sqrt{2}}{3} \qquad \textbf{(B) } \frac{1}{2} \qquad \textbf{(C) } 2 - \sqrt{2} \qquad \textbf{(D) } 1 - \frac{\sqrt{2}}{4} \qquad \textbf{(E) } \frac{2}{3}</math> | ||
− | + | == Solution == | |
+ | Note that <math>BP=BQ=DR=DS=1-s.</math> It follows that <math>\triangle BPQ</math> and <math>\triangle DRS</math> are isosceles right triangles. | ||
+ | |||
+ | In <math>\triangle BPQ,</math> we have <math>PQ=BP\sqrt2,</math> or | ||
+ | <cmath>\begin{align*} | ||
+ | s &= (1-s)\sqrt2 \\ | ||
+ | s &= \sqrt2 - s\sqrt2 \\ | ||
+ | \left(\sqrt2+1\right)s &= \sqrt2 \\ | ||
+ | s &= \frac{\sqrt2}{\sqrt2 + 1}. | ||
+ | \end{align*}</cmath> | ||
+ | Therefore, the answer is <cmath>s = \frac{\sqrt2}{\sqrt2 + 1}\cdot\frac{\sqrt2 - 1}{\sqrt2 - 1} = \boxed{\textbf{(C) } 2 - \sqrt{2}}.</cmath> | ||
+ | ~MRENTHUSIASM | ||
+ | |||
+ | == See Also == | ||
+ | |||
+ | {{AMC10 box|year=2022|ab=A|num-b=4|num-a=6}} | ||
+ | {{MAA Notice}} |
Revision as of 21:31, 11 November 2022
Problem
Square has side length . Points , , , and each lie on a side of such that is an equilateral convex hexagon with side length . What is ?
Solution
Note that It follows that and are isosceles right triangles.
In we have or Therefore, the answer is ~MRENTHUSIASM
See Also
2022 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.