Difference between revisions of "2003 AMC 10B Problems/Problem 24"

m (Solution 2)
m (Solution 2: rephrasing, the original phrasing wasn't very good)
Line 45: Line 45:
 
<math>x = \frac{15y}{8}</math>
 
<math>x = \frac{15y}{8}</math>
  
Now that we have <math>x</math> in terms of <math>y</math>, we notice that <math>\frac{x}{y}</math> (the fourth term) is simply <math>\frac{\frac{15y}{8}}{y}</math>, which is just <math>\frac{15}{8}</math>. Additionally, we notice that the fourth term can be represented as <math>x - 5y = \frac{15}{8}</math>; rewritten as <math>\frac{15y}{8} - 5y = \frac{15}{8}</math>, we can simplify as follows:  
+
Now that we have <math>x</math> in terms of <math>y</math>, we substitute in <math>\frac{15y}{8}</math> in for <math>x</math> in <math>\frac{x}{y}</math> (the fourth term). This leaves us with <math>\frac{\frac{15y}{8}}{y} = \frac{15}{8}</math>.
 +
 
 +
Recall that <math>\frac{x}{y}</math> can be written as <math>x - 5y</math>. Thus, <math>x - 5y = \frac{15}{8}</math>. Substitute in <math>\frac{15}{8}</math> in for <math>x</math>, and we see:
  
 
<math>\frac{15y}{8} - 5y = \frac{15}{8}</math>
 
<math>\frac{15y}{8} - 5y = \frac{15}{8}</math>
Line 53: Line 55:
 
<math>y = \frac{15}{-25} = \frac{-3}{5}</math>
 
<math>y = \frac{15}{-25} = \frac{-3}{5}</math>
  
Aha! This means <math>2y</math>, the common difference, is <math>\frac{-6}{5}</math>! Therefore, subtracting <math>2y</math> from the fourth term, <math>\frac{x}{y}</math> or <math>\frac{15}{8}</math>, we see the fifth term is:
+
Aha! This means <math>2y</math>, the common difference, is <math>2\cdot y = 2\cdot \frac{-3}{5} = \frac{-6}{5}</math>. Now, all we need to do is find the fifth term, which is just the <math>\frac{x}{y}-2y</math>. We can substitute known values to solve:
 +
 
 +
<math>\frac{x}{y}-2y = \frac{15}{8} - \frac{-6}{5} = \frac{15}{8} + \frac{6}{5} = \frac{75 + 48}{40} = \boxed{\textbf{(E)}\ \frac{123}{40}}</math>.
  
<math>\frac{15}{8} - \frac{-6}{5} = \frac{15}{8} + \frac{6}{5} = \frac{75 + 48}{40} = \boxed{\textbf{(E)}\ \frac{123}{40}}</math>
+
~SXWang
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2003|ab=B|num-b=23|num-a=25}}
 
{{AMC10 box|year=2003|ab=B|num-b=23|num-a=25}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 16:51, 14 July 2022

Problem

The first four terms in an arithmetic sequence are $x+y$, $x-y$, $xy$, and $\frac{x}{y}$, in that order. What is the fifth term?

$\textbf{(A)}\ -\frac{15}{8}\qquad\textbf{(B)}\ -\frac{6}{5}\qquad\textbf{(C)}\ 0\qquad\textbf{(D)}\ \frac{27}{20}\qquad\textbf{(E)}\ \frac{123}{40}$

Solution 1

The difference between consecutive terms is $(x-y)-(x+y)=-2y.$ Therefore we can also express the third and fourth terms as $x-3y$ and $x-5y.$ Then we can set them equal to $xy$ and $\frac{x}{y}$ because they are the same thing.

\begin{align*} xy&=x-3y\\ xy-x&=-3y\\ x(y-1)&=-3y\\ x&=\frac{-3y}{y-1} \end{align*}

Substitute into our other equation.

\[\frac{x}{y}=x-5y\] \[\frac{-3}{y-1}=\frac{-3y}{y-1}-5y\] \[-3=-3y-5y(y-1)\] \[0=5y^2-2y-3\] \[0=(5y+3)(y-1)\] \[y=-\frac35, 1\]

But $y$ cannot be $1$ because then the first term would be $x+1$ and the second term $x-1$ while the last two terms would be equal to $x.$ Therefore $y=-\frac35.$ Substituting the value for $y$ into any of the equations, we get $x=-\frac98.$ Finally,

\[\frac{x}{y}-2y=\frac{9\cdot 5}{8\cdot 3}+\frac{6}{5}=\boxed{\textbf{(E)}\ \frac{123}{40}}\]

Solution 2

Because this is an arithmetic sequence, we conclude from the first two terms that the common difference is $-2y$. Therefore, $xy = x-3y$ and $\frac{x}{y}=x-5y$. If we multiply $xy$ and $\frac{x}{y}$, we see:

$xy\cdot\frac{x}{y} = (x-3y)(x-5y) = x^2 - 8xy + 15y^2$

Because $xy\cdot\frac{x}{y}$, by basic multiplication, is $x^2$, we have

$x^2 = x^2 - 8xy + 15y^2$

$8xy = 15y^2$

$8x = 15y$

$x = \frac{15y}{8}$

Now that we have $x$ in terms of $y$, we substitute in $\frac{15y}{8}$ in for $x$ in $\frac{x}{y}$ (the fourth term). This leaves us with $\frac{\frac{15y}{8}}{y} = \frac{15}{8}$.

Recall that $\frac{x}{y}$ can be written as $x - 5y$. Thus, $x - 5y = \frac{15}{8}$. Substitute in $\frac{15}{8}$ in for $x$, and we see:

$\frac{15y}{8} - 5y = \frac{15}{8}$

$15y - 40y = 15$

$y = \frac{15}{-25} = \frac{-3}{5}$

Aha! This means $2y$, the common difference, is $2\cdot y = 2\cdot \frac{-3}{5} = \frac{-6}{5}$. Now, all we need to do is find the fifth term, which is just the $\frac{x}{y}-2y$. We can substitute known values to solve:

$\frac{x}{y}-2y = \frac{15}{8} - \frac{-6}{5} = \frac{15}{8} + \frac{6}{5} = \frac{75 + 48}{40} = \boxed{\textbf{(E)}\ \frac{123}{40}}$.

~SXWang

See Also

2003 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png