Difference between revisions of "2022 AIME II Problems/Problem 4"
(→Solution) |
|||
Line 3: | Line 3: | ||
There is a positive real number <math>x</math> not equal to either <math>\tfrac{1}{20}</math> or <math>\tfrac{1}{2}</math> such that<cmath>\log_{20x} (22x)=\log_{2x} (202x).</cmath>The value <math>\log_{20x} (22x)</math> can be written as <math>\log_{10} (\tfrac{m}{n})</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | There is a positive real number <math>x</math> not equal to either <math>\tfrac{1}{20}</math> or <math>\tfrac{1}{2}</math> such that<cmath>\log_{20x} (22x)=\log_{2x} (202x).</cmath>The value <math>\log_{20x} (22x)</math> can be written as <math>\log_{10} (\tfrac{m}{n})</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
− | ==Solution== | + | ==Solution 1== |
We could assume a variable <math>v</math> which equals to both <math>\log_{20x} (22x)</math> and <math>\log_{2x} (202x)</math>. | We could assume a variable <math>v</math> which equals to both <math>\log_{20x} (22x)</math> and <math>\log_{2x} (202x)</math>. | ||
Line 18: | Line 18: | ||
~DSAERF-CALMIT (https://binaryphi.site) | ~DSAERF-CALMIT (https://binaryphi.site) | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | We have | ||
+ | \begin{align*} | ||
+ | \log_{20x} (22x) | ||
+ | & = \frac{\log_k 22x}{\log_k 20x} \\ | ||
+ | & = \frac{\log_k x + \log_k 22}{\log_k x + \log_k 20} . | ||
+ | \end{align*} | ||
+ | |||
+ | We have | ||
+ | \begin{align*} | ||
+ | \log_{2x} (202x) | ||
+ | & = \frac{\log_k 202x}{\log_k 2x} \\ | ||
+ | & = \frac{\log_k x + \log_k 202 }{\log_k x + \log_k 2} . | ||
+ | \end{align*} | ||
+ | |||
+ | Because <math>\log_{20x} (22x)=\log_{2x} (202x)</math>, we get | ||
+ | \[ | ||
+ | \frac{\log_k x + \log_k 22}{\log_k x + \log_k 20} | ||
+ | = \frac{\log_k x + \log_k 202 }{\log_k x + \log_k 2} . | ||
+ | \] | ||
+ | |||
+ | We denote this common value as <math>\lambda</math>. | ||
+ | |||
+ | By solving the equality <math>\frac{\log_k x + \log_k 22}{\log_k x + \log_k 20} = \lambda</math>, we get <math>\log_k x = \frac{\log_k 22 - \lambda \log_k 20}{\lambda - 1}</math>. | ||
+ | |||
+ | By solving the equality <math>\frac{\log_k x + \log_k 202 }{\log_k x + \log_k 2} = \lambda</math>, we get <math>\log_k x = \frac{\log_k 202 - \lambda \log_k 2}{\lambda - 1}</math>. | ||
+ | |||
+ | By equating these two equations, we get | ||
+ | <cmath> | ||
+ | \[ | ||
+ | \frac{\log_k 22 - \lambda \log_k 20}{\lambda - 1} | ||
+ | = \frac{\log_k 202 - \lambda \log_k 2}{\lambda - 1} . | ||
+ | \] | ||
+ | </cmath> | ||
+ | |||
+ | Therefore, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \log_{20x} (22x) | ||
+ | & = \lambda \\ | ||
+ | & = \frac{\log_k 22 - \log_k 202}{\log_k 20 - \log_k 2} \\ | ||
+ | & = \frac{\log_k \frac{11}{101}}{\log_k 10} \\ | ||
+ | & = \log_{10} \frac{11}{101} . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Therefore, the answer is <math>11 + 101 = \boxed{\textbf{(112) }}</math>. | ||
+ | |||
+ | ~Steven Chen (www.professorchenedu.com) | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2022|n=II|num-b=3|num-a=5}} | {{AIME box|year=2022|n=II|num-b=3|num-a=5}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 13:31, 18 February 2022
Contents
Problem
There is a positive real number not equal to either or such thatThe value can be written as , where and are relatively prime positive integers. Find .
Solution 1
We could assume a variable which equals to both and .
So that and
Express as:
Substitute to :
Thus, , where and .
Therefore, .
~DSAERF-CALMIT (https://binaryphi.site)
Solution 2
We have \begin{align*} \log_{20x} (22x) & = \frac{\log_k 22x}{\log_k 20x} \\ & = \frac{\log_k x + \log_k 22}{\log_k x + \log_k 20} . \end{align*}
We have \begin{align*} \log_{2x} (202x) & = \frac{\log_k 202x}{\log_k 2x} \\ & = \frac{\log_k x + \log_k 202 }{\log_k x + \log_k 2} . \end{align*}
Because , we get \[ \frac{\log_k x + \log_k 22}{\log_k x + \log_k 20} = \frac{\log_k x + \log_k 202 }{\log_k x + \log_k 2} . \]
We denote this common value as .
By solving the equality , we get .
By solving the equality , we get .
By equating these two equations, we get
Therefore,
Therefore, the answer is .
~Steven Chen (www.professorchenedu.com)
See Also
2022 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.