Difference between revisions of "2005 AMC 10A Problems/Problem 23"
Dairyqueenxd (talk | contribs) (→Solution 3) |
Dairyqueenxd (talk | contribs) (→Solution 4) |
||
Line 71: | Line 71: | ||
== Solution 4 == | == Solution 4 == | ||
− | WLOG, let <math>AC=1</math>, <math>BC=2</math>, so radius of the circle is <math>\frac{3}{2}</math> and <math>OC=\frac{1}{2}</math>. As in | + | WLOG, let <math>AC=1</math>, <math>BC=2</math>, so radius of the circle is <math>\frac{3}{2}</math> and <math>OC=\frac{1}{2}</math>. As in Solution 1, By same altitude, the ratio <math>[DCE]/[ABD]=PE/AB</math>, where <math>P</math> is the point where <math>DC</math> extended meets circle <math>O</math>. Note that <math>\angle P = 90^{\circ}</math>, so <math>DCO ~ DPE</math> with ratio <math>1:2</math> so <math>PE = 1</math> Thus, our ratio is <math>\boxed{\textbf{(B) }\frac{1}{3}}</math>. |
== Solution 5 (Video) == | == Solution 5 (Video) == |
Revision as of 12:26, 14 December 2021
Contents
Problem
Let be a diameter of a circle and let be a point on with . Let and be points on the circle such that and is a second diameter. What is the ratio of the area of to the area of ?
Solution 1
WLOG, Let us assume that the diameter is of length .
The length of is and is .
is the radius of the circle, which is , so using the Pythagorean Theorem the height of is . This is also the height of the .
The area of is = .
The height of can be found using the area of and as base.
Hence, the height of is = .
The diameter is the base for both the triangles and ,
Hence, the ratio of the area of to the area of is =
Solution 2
Since and share a base, the ratio of their areas is the ratio of their altitudes. Draw the altitude from to .
.
Since , then . So the ratio of the two altitudes is
Solution 3
Say the center of the circle is point ; Without loss of generality, assume , so and the diameter and radius are and , respectively. Therefore, , and . The area of can be expressed as happens to be the area of . Furthermore, or Therefore, the ratio is
Solution 4
WLOG, let , , so radius of the circle is and . As in Solution 1, By same altitude, the ratio , where is the point where extended meets circle . Note that , so with ratio so Thus, our ratio is .
Solution 5 (Video)
Video solution: https://youtu.be/i6eooSSJF64
See Also
2005 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.