Difference between revisions of "2007 AMC 8 Problems/Problem 12"
(→Video Solution by WhyMath) |
(→Problem) |
||
Line 4: | Line 4: | ||
the area of the extensions to the area of the original hexagon? | the area of the extensions to the area of the original hexagon? | ||
− | < | + | <asy> |
+ | defaultpen(linewidth(0.7)); | ||
+ | draw(polygon(3)); | ||
+ | pair D=origin+1*dir(270), E=origin+1*dir(150), F=1*dir(30); | ||
+ | draw(D--E--F--cycle); | ||
+ | <\asy> | ||
<math>\mathrm{(A)}\ 1:1 \qquad \mathrm{(B)}\ 6:5 \qquad \mathrm{(C)}\ 3:2 \qquad \mathrm{(D)}\ 2:1 \qquad \mathrm{(E)}\ 3:1</math> | <math>\mathrm{(A)}\ 1:1 \qquad \mathrm{(B)}\ 6:5 \qquad \mathrm{(C)}\ 3:2 \qquad \mathrm{(D)}\ 2:1 \qquad \mathrm{(E)}\ 3:1</math> |
Revision as of 11:22, 12 July 2021
Problem
A unit hexagram is composed of a regular hexagon of side length and its equilateral triangular extensions, as shown in the diagram. What is the ratio of the area of the extensions to the area of the original hexagon?
<asy> defaultpen(linewidth(0.7)); draw(polygon(3)); pair D=origin+1*dir(270), E=origin+1*dir(150), F=1*dir(30); draw(D--E--F--cycle); <\asy>
Solution
The six equilateral triangular extensions fit perfectly into the hexagon meaning the answer is
See Also
2007 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.