Difference between revisions of "2021 AMC 12A Problems/Problem 25"

m (Solution 1: Added in the i column.)
m (Solution 1)
Line 8: Line 8:
  
 
For every factor <math>\frac{(e_i+1)^3}{p_i^{e_i}}</math> with a fixed <math>p_i,</math> where <math>1\leq i\leq k,</math> the denominator grows faster than the numerator, as exponential functions grow faster than polynomial functions. For each prime <math>p_i=2,3,5,7,\cdots,</math> we look for the <math>e_i</math> for which <math>\frac{(e_i+1)^3}{p_i^{e_i}}</math> is a relative maximum:
 
For every factor <math>\frac{(e_i+1)^3}{p_i^{e_i}}</math> with a fixed <math>p_i,</math> where <math>1\leq i\leq k,</math> the denominator grows faster than the numerator, as exponential functions grow faster than polynomial functions. For each prime <math>p_i=2,3,5,7,\cdots,</math> we look for the <math>e_i</math> for which <math>\frac{(e_i+1)^3}{p_i^{e_i}}</math> is a relative maximum:
<cmath>\begin{array}{c|c|c|c|c}
+
\[\begin{array}{c|c|c|c|c} \boldsymbol{i} & \boldsymbol{p_i} & \boldsymbol{e_i} & \boldsymbol{(e_i+1)^3/\left(p_i^{e_i}\right)} & \textbf{max?} \\ [0.5ex]
\boldsymbol{i} & \boldsymbol{p_i} & \boldsymbol{e_i} & \boldsymbol{(e_i+1)^3/\left(p_i^{e_i}\right)} & \textbf{max?} \\  
+
\hline\hline  
\hline\hline
+
& & & & \\ [-2ex]
1 & 2 & 0 & 1 & \\
+
1 & 2 & 0 & 1 & \\    
  & 2 & 1 & 4 & \\
+
& 2 & 1 & 4 & \\  
  & 2 & 2 & 27/4 &\\
+
& 2 & 2 & 27/4 &\\  
  & 2 & 3 & 8 & \text{yes}\\
+
& 2 & 3 & 8 & \text{yes}\\  
  & 2 & 4 & 125/16 & \\
+
& 2 & 4 & 125/16 & \\ [0.5ex]
\hline
+
\hline
2 & 3 & 0 & 1 &\\
+
& & & & \\ [-2ex]
  & 3 & 1 & 8/3 & \\
+
2 & 3 & 0 & 1 &\\  
  & 3 & 2 & 3 &  \text{yes}\\
+
& 3 & 1 & 8/3 & \\  
  & 3 & 3 & 64/27 &  \\
+
& 3 & 2 & 3 &  \text{yes}\\  
\hline
+
& 3 & 3 & 64/27 &  \\ [0.5ex]
3 & 5 & 0 & 1 &  \\
+
\hline
  & 5 & 1 & 8/5 &  \text{yes}\\
+
& & & & \\ [-2ex]
  & 5 & 2 & 27/25 & \\
+
3 & 5 & 0 & 1 &  \\  
\hline
+
& 5 & 1 & 8/5 &  \text{yes}\\  
4 & 7 & 0 & 1 &  \\
+
& 5 & 2 & 27/25 & \\ [0.5ex]
  & 7 & 1 & 8/7 &  \text{yes}\\
+
\hline
  & 7 & 2 & 27/49 & \\
+
& & & & \\ [-2ex]
\hline
+
4 & 7 & 0 & 1 &  \\  
5 & 11 & 0 & 1 & \text{yes} \\
+
& 7 & 1 & 8/7 &  \text{yes}\\  
  & 11 & 1 & 8/11 &  \\
+
& 7 & 2 & 27/49 & \\ [0.5ex]
\hline
+
\hline
\cdots & \cdots & \cdots & \cdots &  
+
& & & & \\ [-2ex]
\end{array}</cmath>
+
5 & 11 & 0 & 1 & \text{yes} \\  
 +
& 11 & 1 & 8/11 &  \\ [0.5ex]
 +
\hline  
 +
& & & & \\ [-2ex]
 +
\cdots & \cdots & \cdots & \cdots & \end{array}\]
  
 
Finally, the number we seek is <math>N=2^3 3^2 5^1 7^1 = 2520.</math> The sum of its digits is <math>2+5+2+0=\boxed{\textbf{(E) }9}.</math>
 
Finally, the number we seek is <math>N=2^3 3^2 5^1 7^1 = 2520.</math> The sum of its digits is <math>2+5+2+0=\boxed{\textbf{(E) }9}.</math>

Revision as of 06:59, 21 February 2021

Problem

Let $d(n)$ denote the number of positive integers that divide $n$, including $1$ and $n$. For example, $d(1)=1,d(2)=2,$ and $d(12)=6$. (This function is known as the divisor function.) Let\[f(n)=\frac{d(n)}{\sqrt [3]n}.\]There is a unique positive integer $N$ such that $f(N)>f(n)$ for all positive integers $n\ne N$. What is the sum of the digits of $N?$

$\textbf{(A) }5 \qquad \textbf{(B) }6 \qquad \textbf{(C) }7 \qquad \textbf{(D) }8\qquad \textbf{(E) }9$

Solution 1

Consider the prime factorization \[n=\prod_{i=1}^{k}p_i^{e_i}.\] By the Multiplication Principle, \[d(n)=\prod_{i=1}^{k}(e_i+1).\] Now, we rewrite $f(n)$ as \[f(n)=\frac{d(n)}{\sqrt [3]n}=\frac{\prod_{i=1}^{k}(e_i+1)}{\prod_{i=1}^{k}p_i^{e_i/3}}=\prod_{i=1}^{k}\frac{e_1+1}{p_i^{{e_i}/3}}.\] As $f(n)>0$ for all positive integers $n,$ it follows that for all positive integers $a$ and $b$, $f(a)>f(b)$ if and only if $f(a)^3>f(b)^3.$ So, $f(n)$ is maximized if and only if \[f(n)^3=\prod_{i=1}^{k}\frac{(e_i+1)^3}{p_i^{{e_i}}}\] is maximized.

For every factor $\frac{(e_i+1)^3}{p_i^{e_i}}$ with a fixed $p_i,$ where $1\leq i\leq k,$ the denominator grows faster than the numerator, as exponential functions grow faster than polynomial functions. For each prime $p_i=2,3,5,7,\cdots,$ we look for the $e_i$ for which $\frac{(e_i+1)^3}{p_i^{e_i}}$ is a relative maximum: \[\begin{array}{c|c|c|c|c} \boldsymbol{i} & \boldsymbol{p_i} & \boldsymbol{e_i} & \boldsymbol{(e_i+1)^3/\left(p_i^{e_i}\right)} & \textbf{max?} \\ [0.5ex] \hline\hline & & & & \\ [-2ex] 1 & 2 & 0 & 1 & \\ & 2 & 1 & 4 & \\ & 2 & 2 & 27/4 &\\ & 2 & 3 & 8 & \text{yes}\\ & 2 & 4 & 125/16 & \\ [0.5ex] \hline & & & & \\ [-2ex] 2 & 3 & 0 & 1 &\\ & 3 & 1 & 8/3 & \\ & 3 & 2 & 3 & \text{yes}\\ & 3 & 3 & 64/27 & \\ [0.5ex] \hline & & & & \\ [-2ex] 3 & 5 & 0 & 1 & \\ & 5 & 1 & 8/5 & \text{yes}\\ & 5 & 2 & 27/25 & \\ [0.5ex] \hline & & & & \\ [-2ex] 4 & 7 & 0 & 1 & \\ & 7 & 1 & 8/7 & \text{yes}\\ & 7 & 2 & 27/49 & \\ [0.5ex] \hline & & & & \\ [-2ex] 5 & 11 & 0 & 1 & \text{yes} \\ & 11 & 1 & 8/11 & \\ [0.5ex] \hline & & & & \\ [-2ex] \cdots & \cdots & \cdots & \cdots & \end{array}\]

Finally, the number we seek is $N=2^3 3^2 5^1 7^1 = 2520.$ The sum of its digits is $2+5+2+0=\boxed{\textbf{(E) }9}.$

Actually, once we get that $3^2$ is a factor of $N,$ we know that the sum of the digits of $N$ must be a multiple of $9.$ Only choice $\textbf{(E)}$ is possible.

~MRENTHUSIASM

Solution 2 (Fast)

Using the answer choices to our advantage, we can show that $N$ must be divisible by 9 without explicitly computing $N$, by exploiting the following fact:

Claim: If $n$ is not divisible by 3, then $f(9n) > f(3n) > f(n)$.

Proof: Since $d(\cdot)$ is a multiplicative function, we have $d(3n) = d(3)d(n) = 2d(n)$ and $d(9n) = 3d(n)$. Then

\begin{align*} f(3n) &= \frac{2d(n)}{\sqrt[3]{3n}} \approx 1.38 f(n)\\ f(9n) &= \frac{3d(n)}{\sqrt[3]{9n}} \approx 1.44 f(n) \end{align*} Note that the values $\frac{2}{\sqrt[3]{3}}$ and $\frac{3}{\sqrt[3]{9}}$ do not have to be explicitly computed; we only need the fact that $\frac{3}{\sqrt[3]{9}} > \frac{2}{\sqrt[3]{3}} > 1$ which is easy to show by hand.

The above claim automatically implies $N$ is a multiple of 9: if $N$ was not divisible by 9, then $f(9N) > f(N)$ which is a contradiction, and if $N$ was divisible by 3 and not 9, then $f(3N) > f(N) > f\left(\frac{N}{3}\right)$, also a contradiction. Then the sum of digits of $N$ must be a multiple of 9, so only choice $\boxed{\textbf{(E) } 9}$ works.

-scrabbler94

Video Solutions

https://www.youtube.com/watch?v=Sv4gj1vMjOs (by Aaron He)

https://www.youtube.com/watch?v=gWaUNz0gLE0 (by Dedekind Cuts)

https://youtube.com/watch?v=y_7s8fvMCdI (by Punxsutawney Phil)

https://youtu.be/6P-0ZHAaC_A (by OmegaLearn)


~ pi_is_3.14

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png