GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2021 AMC 12B Problems"

(Problem 25)
(Problem 25)
Line 229: Line 229:
 
I find that the number of coordinates with <math>x=1</math> above the line is 30, and the number of coordinates with <math>x=2</math> above the line is 29. Every time the line <math>y=\frac{2}{3}x</math> hits a y-value with an integer coordinate, the number of points above the line decreases by one. I wrote out the sum of 30 terms in hopes of finding a pattern. I graphed the first couple positive integer x-coordinates, and found that the sum of the integers above the line is <math>30+29+28+28+27+26+26 \ldots+ 10</math>. The even integer repeats itself every third term in the sum. I found that the average of each of the terms is 20, and there are 30 of them which means that exactly 600 above the line as desired. This give a lower bound because if the slope decreases a little bit, then the points that the line goes through will be above the line.  
 
I find that the number of coordinates with <math>x=1</math> above the line is 30, and the number of coordinates with <math>x=2</math> above the line is 29. Every time the line <math>y=\frac{2}{3}x</math> hits a y-value with an integer coordinate, the number of points above the line decreases by one. I wrote out the sum of 30 terms in hopes of finding a pattern. I graphed the first couple positive integer x-coordinates, and found that the sum of the integers above the line is <math>30+29+28+28+27+26+26 \ldots+ 10</math>. The even integer repeats itself every third term in the sum. I found that the average of each of the terms is 20, and there are 30 of them which means that exactly 600 above the line as desired. This give a lower bound because if the slope decreases a little bit, then the points that the line goes through will be above the line.  
  
To find the upper bound, notice that each point with an integer-valued x-coordinate is either <math>\frac{1}{3}</math> or <math>\frac{2}{3}</math> above the line. Since the slope through a point is the y-coordinate divided by the x-coordinate, a shift in the slope will increase the y-value of the higher x-coordinates. We turn our attention to <math>x=28, 29, 30</math> which the line <math>y=\frac{2}{3}x</math> intersects at <math>y= \frac{56}{3}, \frac{58}{3}, 20</math>. The point (30,20) is already counted below the line, and we can clearly see that if we slowly increase the slope of the line, we will hit the point (28,19) since (28, \frac{56}{3}) is closer to the lattice point. The slope of the line which goes through both the origin and (28,19) is <math>y=\frac{19}{28}x</math>. This gives an upper bound of <math>m=\frac{19}{28}</math>.  
+
To find the upper bound, notice that each point with an integer-valued x-coordinate is either <math>\frac{1}{3}</math> or <math>\frac{2}{3}</math> above the line. Since the slope through a point is the y-coordinate divided by the x-coordinate, a shift in the slope will increase the y-value of the higher x-coordinates. We turn our attention to <math>x=28, 29, 30</math> which the line <math>y=\frac{2}{3}x</math> intersects at <math>y= \frac{56}{3}, \frac{58}{3}, 20</math>. The point (30,20) is already counted below the line, and we can clearly see that if we slowly increase the slope of the line, we will hit the point (28,19) since (28, <math>\frac{56}{3}</math>) is closer to the lattice point. The slope of the line which goes through both the origin and (28,19) is <math>y=\frac{19}{28}x</math>. This gives an upper bound of <math>m=\frac{19}{28}</math>.  
  
 
Taking the upper bound of m and subtracting the lower bound yields <math>\frac{19}{28}-\frac{2}{3}=\frac{1}{84}</math>. This is answer E.
 
Taking the upper bound of m and subtracting the lower bound yields <math>\frac{19}{28}-\frac{2}{3}=\frac{1}{84}</math>. This is answer E.

Revision as of 22:56, 11 February 2021

2021 AMC 12B (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the test if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

How many integer values of $x$ satisfy $|x|<3\pi?$

$\textbf{(A) }9 \qquad \textbf{(B) }10 \qquad \textbf{(C) }18 \qquad \textbf{(D) }19 \qquad \textbf{(E) }20$

Solution

Problem 2

At a math contest, $57$ students are wearing blue shirts, and another $75$ students are wearing yellow shirts. The $132$ students are assigned into $66$ points. In exactly $23$ of these pairs, both students are wearing blue shirts. In how many pairs are both studets wearing yellow shirts?

$\textbf{(A) }23 \qquad \textbf{(B) }32 \qquad \textbf{(C) }37 \qquad \textbf{(D) }41 \qquad \textbf{(E) }64$

Solution

Problem 3

Suppose\[2+\frac{1}{1+\frac{1}{2+\frac{2}{3+x}}}=\frac{144}{53}.\]What is the value of $x?$

$\textbf{(A) }\frac34 \qquad \textbf{(B) }\frac78 \qquad \textbf{(C) }\frac{14}{15} \qquad \textbf{(D) }\frac{37}{38} \qquad \textbf{(E) }\frac{52}{53}$

Solution

Problem 4

Ms. Blackwell gives an exam to two classes. The mean of the scores of the students in the morning class is $84$, and the afternoon class's mean score is $70$. The ratio of the number of students in the morning clas to the number of students in the afternoon class is $\frac34$. What is the mean of the score of all the students?

$\textbf{(A) }74 \qquad \textbf{(B) }75 \qquad \textbf{(C) }76 \qquad \textbf{(D) }77 \qquad \textbf{(E) }78$

Solution

Problem 5

The point $P(a,b)$ in the $xy$-plane is first rotated counterclockwise by $90^\circ$ around the point $(1,5)$ and then reflected about the line $y=-x$. The image of $P$ after these two transformations is at $(-6,3)$. What is $b-a?$

$\textbf{(A) }1 \qquad \textbf{(B) }3 \qquad \textbf{(C) }5 \qquad \textbf{(D) }7 \qquad \textbf{(E) }9$

Solution

Problem 6

An inverted cone with base radius $12 \text{cm}$ and height $18\text{cm}$ is full of water. The water is poured into a tall cylinder whose horizontal base has a radius of $24\text{cm}$. What is the height in centimeters of the water in the cylinder?

$\textbf{(A) }1.5 \qquad \textbf{(B) }3 \qquad \textbf{(C) }4 \qquad \textbf{(D) }4.5 \qquad \textbf{(E) }6$

Solution

Problem 7

Let $N=34\cdot34\cdot63\cdot270.$ What is the ratio of the sum of the odd divisors of $N$ to the sum of the even divisors of $N?$

$\textbf{(A) }1:16 \qquad \textbf{(B) }1:15 \qquad \textbf{(C) }1:14 \qquad \textbf{(D) }1:8 \qquad \textbf{(E) }1:3$

Solution

Problem 8

Three equally spaced parallel lines intersect a circle, creating three chords of lengths $38,38,$ and $34$. What is the distance between two adjacent parallel lines?

$\textbf{(A) }5\frac12 \qquad \textbf{(B) }6 \qquad \textbf{(C) }6\frac12 \qquad \textbf{(D) }7 \qquad \textbf{(E) }7\frac12$

Solution

Problem 9

What is the value of\[\frac{\log_2 80}{\log_{40}2}-\frac{\log_2 160}{\log_{20}2}?\] $\textbf{(A) }0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }\frac54 \qquad \textbf{(D) }2 \qquad \textbf{(E) }\log_2 5$

Solution

Problem 10

Two distinct numbers are selected from the set $\{1,2,3,4,\dots,36,37\}$ so that the sum of the remaining $35$ numbers is the product of these two numbers. What is the difference of these two numbers?

$\textbf{(A) }5 \qquad \textbf{(B) }7 \qquad \textbf{(C) }8\qquad \textbf{(D) }9 \qquad \textbf{(E) }10$

Solution

Problem 11

Triangle $ABC$ has $AB=13,BC=14$ and $AC=15$. Let $P$ be the point on $\overline{AC}$ such that $PC=10$. There are exactly two points $D$ and $E$ on line $BP$ such that quadrilaterals $ABCD$ and $ABCE$ are trapezoids. What is the distance $DE?$

$\textbf{(A) }\frac{42}5 \qquad \textbf{(B) }6\sqrt2 \qquad \textbf{(C) }\frac{84}5\qquad \textbf{(D) }12\sqrt2 \qquad \textbf{(E) }18$

Solution

Problem 12

Suppose that $S$ is a finite set of positive integers. If the greatest integer in $S$ is removed from $S$, then the average value (arithmetic mean) of the integers remaining is $32$. If the least integer in $S$ is also removed, then the average value of the integers remaining is $35$. If the great integer is then returned to the set, the average value of the integers rises to $40.$ The greatest integer in the original set $S$ is $72$ greater than the least integer in $S$. What is the average value of all the integers in the set $S?$

$\textbf{(A) }36.2 \qquad \textbf{(B) }36.4 \qquad \textbf{(C) }36.6\qquad \textbf{(D) }36.8 \qquad \textbf{(E) }37$

Solution

Problem 13

How many values of $\theta$ in the interval $0<\theta\le 2\pi$ satisfy\[1-3\sin\theta+5\cos3\theta?\] $\textbf{(A) }2 \qquad \textbf{(B) }4 \qquad \textbf{(C) }5\qquad \textbf{(D) }6 \qquad \textbf{(E) }8$

Solution

Problem 14

Let $ABCD$ be a rectangle and let $\overline{DM}$ be a segment perpendicular to the plane of $ABCD$. Suppose that $\overline{DM}$ has integer length, and the lengths of $\overline{MA},\overline{MC},$ and $\overline{MB}$ are consecutive odd positive integers (in this order). What is the volume of pyramid $MACD?$

$\textbf{(A) }24\sqrt5 \qquad \textbf{(B) }60 \qquad \textbf{(C) }28\sqrt5\qquad \textbf{(D) }66 \qquad \textbf{(E) }8\sqrt{70}$

Solution

Problem 15

The figure is constructed from $11$ line segments, each of which has length $2$. The area of pentagon $ABCDE$ can be written is $\sqrt{m} + \sqrt{n}$, where $m$ and $n$ are positive integers. What is $m + n ?$ [asy] /* Made by samrocksnature */ pair A=(-2.4638,4.10658); pair B=(-4,2.6567453480756127); pair C=(-3.47132,0.6335248637894945); pair D=(-1.464483379039766,0.6335248637894945); pair E=(-0.956630463955801,2.6567453480756127); pair F=(-2,2); pair G=(-3,2); draw(A--B--C--D--E--A); draw(A--F--A--G); draw(B--F--C); draw(E--G--D); label("A",A,N); label("B",B,W); label("C",C,W); label("D",D,E); label("E",E,dir(0)); dot(A^^B^^C^^D^^E^^F^^G); [/asy] $\textbf{(A)} ~20 \qquad\textbf{(B)} ~21 \qquad\textbf{(C)} ~22 \qquad\textbf{(D)} ~23 \qquad\textbf{(E)} ~24$

Solution

Problem 16

Let $g(x)$ be a polynomial with leading coefficient $1,$ whose three roots are the reciprocals of the three roots of $f(x)=x^3+ax^2+bx+c,$ where $1<a<b<c.$ What is $g(1)$ in terms of $a,b,$ and $c?$

$\textbf{(A) }\frac{1+a+b+c}c \qquad \textbf{(B) }1+a+b+c \qquad \textbf{(C) }\frac{1+a+b+c}{c^2}\qquad \textbf{(D) }\frac{a+b+c}{c^2} \qquad \textbf{(E) }\frac{1+a+b+c}{a+b+c}$

Solution

Problem 17

Let $ABCD$ be an isoceles trapezoid having parallel bases $\overline{AB}$ and $\overline{CD}$ with $AB>CD.$ Line segments from a point inside $ABCD$ to the vertices divide the trapezoid into four triangles whose areas are $2, 3, 4,$ and $5$ starting with the triangle with base $\overline{CD}$ and moving clockwise as shown in the diagram below. What is the ratio $\frac{AB}{CD}?$ [asy] unitsize(100); pair A=(-1, 0), B=(1, 0), C=(0.3, 0.9), D=(-0.3, 0.9), P=(0.2, 0.5), E=(0.1, 0.75), F=(0.4, 0.5), G=(0.15, 0.2), H=(-0.3, 0.5);  draw(A--B--C--D--cycle, black);  draw(A--P, black); draw(B--P, black); draw(C--P, black); draw(D--P, black); label("$A$",A,(-1,0)); label("$B$",B,(1,0)); label("$C$",C,(1,-0)); label("$D$",D,(-1,0)); label("$2$",E,(0,0)); label("$3$",F,(0,0)); label("$4$",G,(0,0)); label("$5$",H,(0,0)); dot(A^^B^^C^^D^^P); [/asy] $\textbf{(A)}\: 3\qquad\textbf{(B)}\: 2+\sqrt{2}\qquad\textbf{(C)}\: 1+\sqrt{6}\qquad\textbf{(D)}\: 2\sqrt{3}\qquad\textbf{(E)}\: 3\sqrt{2}$

Solution

Problem 18

Let $z$ be a complex number satisfying $12|z|^2=2|z+2|^2+|z^2+1|^2+31.$ What is the value of $z+\frac 6z?$

$\textbf{(A) }-2 \qquad \textbf{(B) }-1 \qquad \textbf{(C) }\frac12\qquad \textbf{(D) }1 \qquad \textbf{(E) }4$

Solution

Problem 19

Two fair dice, each with at least $6$ faces are rolled. On each face of each dice is printed a distinct integer from $1$ to the number of faces on that die, inclusive. The probability of rolling a sum if $7$ is $\frac34$ of the probability of rolling a sum of $10,$ and the probability of rolling a sum of $12$ is $\frac{1}{12}$. What is the least possible number of faces on the two dice combined?

$\textbf{(A) }16 \qquad \textbf{(B) }17 \qquad \textbf{(C) }18\qquad \textbf{(D) }19 \qquad \textbf{(E) }20$

Solution

Problem 20

Let $Q(z)$ and $R(z)$ be the unique polynomials such that\[z^{2021}+1=(z^2+z+1)Q(z)+R(z)\]and the degree of $R$ is less than $2.$ What is $R(z)?$

$\textbf{(A) }-z \qquad \textbf{(B) }-1 \qquad \textbf{(C) }2021\qquad \textbf{(D) }z+1 \qquad \textbf{(E) }2z+1$

Solution

Problem 21

Let $S$ be the sum of all positive real numbers $x$ for which\[x^{2^{\sqrt2}}=\sqrt2^{2^x}.\]Which of the following statements is true?

$\textbf{(A) }S<\sqrt2 \qquad \textbf{(B) }S=\sqrt2 \qquad \textbf{(C) }\sqrt2<S<2\qquad \textbf{(D) }2\le S<6 \qquad \textbf{(E) }S\ge 6$

Solution

Problem 22

Arjun and Beth play a game in which they take turns removing one brick or two adjacent bricks from one "wall" among a set of several walls of bricks, with gaps possibly creating new walls. The walls are one brick tall. For example, a set of walls of sizes $4$ and $2$ can be changed into any of the following by one move: $(3,2),(2,1,2),(4),(4,1),(2,2),$ or $(1,1,2).$

[asy] unitsize(4mm); real[] boxes = {0,1,2,3,5,6,13,14,15,17,18,21,22,24,26,27,30,31,32,33}; for(real i:boxes){ 	draw(box((i,0),(i+1,3))); } draw((8,1.5)--(12,1.5),Arrow()); defaultpen(fontsize(20pt)); label(",",(20,0)); label(",",(29,0)); label(",...",(35.5,0)); [/asy]

Arjun plays first, and the player who removes the last brick wins. For which starting configuration is there a strategy that guarantees a win for Beth?

$\textbf{(A) }(6,1,1) \qquad \textbf{(B) }(6,2,1) \qquad \textbf{(C) }(6,2,2)\qquad \textbf{(D) }(6,3,1) \qquad \textbf{(E) }(6,3,2)$

Solution

Problem 23

Three balls are randomly and independantly tossed into bins numbered with the positive integers so that for each ball, the probability that it is tossed into bin $i$ is $2^{-i}$ for $i=1,2,3,....$ More than one ball is allowed in each bin. The probability that the balls end up evenly spaced in distinct bins is $\frac pq,$ where $p$ and $q$ are relatively prime positive integers. (For example, the balls are evenly spaced if they are tossed into bins $3,17,$ and $10.$) What is $p+q?$

$\textbf{(A) }55 \qquad \textbf{(B) }56 \qquad \textbf{(C) }57\qquad \textbf{(D) }58 \qquad \textbf{(E) }59$

Solution

Problem 24

Let $ABCD$ be a parallelogram with area $15$. Points $P$ and $Q$ are the projections of $A$ and $C,$ respectively, onto the line $BD;$ and points $R$ and $S$ are the projections of $B$ and $D,$ respectively, onto the line $AC.$ See the figure, which also shows the relative locations of these points.

[asy] size(350); defaultpen(linewidth(0.8)+fontsize(11)); real theta = aTan(1.25/2); pair A = 2.5*dir(180+theta), B = (3.35,0), C = -A, D = -B, P = foot(A,B,D), Q = -P, R = foot(B,A,C), S = -R; draw(A--B--C--D--A^^B--D^^R--S^^rightanglemark(A,P,D,6)^^rightanglemark(C,Q,D,6)); draw(B--R^^C--Q^^A--P^^D--S,linetype("4 4")); dot("$A$",A,dir(270)); dot("$B$",B,E); dot("$C$",C,N); dot("$D$",D,W); dot("$P$",P,SE); dot("$Q$",Q,NE); dot("$R$",R,N); dot("$S$",S,dir(270)); [/asy]

Suppose $PQ=6$ and $RS=8,$ and let $d$ denote the length of $\overline{BD},$ the longer diagonal of $ABCD.$ Then $d^2$ can be written in the form $m+n\sqrt p,$ where $m,n,$ and $p$ are positive integers and $p$ is not divisible by the square of any prime. What is $m+n+p?$

$\textbf{(A) }81 \qquad \textbf{(B) }89 \qquad \textbf{(C) }97\qquad \textbf{(D) }105 \qquad \textbf{(E) }113$

Solution

Problem 25

Let $S$ be the set of lattice points in the coordinate plane, both of whose coordinates are integers between $1$ and $30,$ inclusive. Exactly $300$ points in $S$ lie on or below a line with equation $y=mx.$ The possible values of $m$ lie in an interval of length $\frac ab,$ where $a$ and $b$ are relatively prime positive integers. What is $a+b?$

$\textbf{(A) }31 \qquad \textbf{(B) }47 \qquad \textbf{(C) }62\qquad \textbf{(D) }72 \qquad \textbf{(E) }85$

Solution


I know that I want about $\frac{2}{3}$ of the box of integer coordinates above my line. There are a total of 30 integer coordinates in the desired range for each axis which gives a total of 900 lattice points. I estimate that the slope, m, is $\frac{2}{3}$. Now, although there is probably an easier solution, I would try to count the number of points above the line to see if there are 600 points above the line. The line $y=\frac{2}{3}x$ separates the area inside the box so that $\frac{2}{3}$ of the are is above the line.

I find that the number of coordinates with $x=1$ above the line is 30, and the number of coordinates with $x=2$ above the line is 29. Every time the line $y=\frac{2}{3}x$ hits a y-value with an integer coordinate, the number of points above the line decreases by one. I wrote out the sum of 30 terms in hopes of finding a pattern. I graphed the first couple positive integer x-coordinates, and found that the sum of the integers above the line is $30+29+28+28+27+26+26 \ldots+ 10$. The even integer repeats itself every third term in the sum. I found that the average of each of the terms is 20, and there are 30 of them which means that exactly 600 above the line as desired. This give a lower bound because if the slope decreases a little bit, then the points that the line goes through will be above the line.

To find the upper bound, notice that each point with an integer-valued x-coordinate is either $\frac{1}{3}$ or $\frac{2}{3}$ above the line. Since the slope through a point is the y-coordinate divided by the x-coordinate, a shift in the slope will increase the y-value of the higher x-coordinates. We turn our attention to $x=28, 29, 30$ which the line $y=\frac{2}{3}x$ intersects at $y= \frac{56}{3}, \frac{58}{3}, 20$. The point (30,20) is already counted below the line, and we can clearly see that if we slowly increase the slope of the line, we will hit the point (28,19) since (28, $\frac{56}{3}$) is closer to the lattice point. The slope of the line which goes through both the origin and (28,19) is $y=\frac{19}{28}x$. This gives an upper bound of $m=\frac{19}{28}$.

Taking the upper bound of m and subtracting the lower bound yields $\frac{19}{28}-\frac{2}{3}=\frac{1}{84}$. This is answer E.

See also

2021 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
2021 AMC 12A Problems
Followed by
2022 AMC 12A Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png