Difference between revisions of "2003 AIME I Problems/Problem 4"
I_like_pie (talk | contribs) |
(prosify, box) |
||
Line 2: | Line 2: | ||
Given that <math> \log_{10} \sin x + \log_{10} \cos x = -1 </math> and that <math> \log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n - 1), </math> find <math> n. </math> | Given that <math> \log_{10} \sin x + \log_{10} \cos x = -1 </math> and that <math> \log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n - 1), </math> find <math> n. </math> | ||
== Solution == | == Solution == | ||
− | <math> \log_{10} \sin x + \log_{10} \cos x = -1 </math> | + | The first equation, <math>\displaystyle \log_{10} \sin x + \log_{10} \cos x = -1 </math>, can be combined under the properties of [[logarithm]]s to <math> \displaystyle \log_{10}(\sin x \cos x) = -1 </math>. Therefore, <math> \sin x \cos x = \frac{1}{10} </math>. |
− | <math> \log_{10}(\sin x \cos x) = -1 </math> | + | Now, manipulate the second equation, <math> \log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n - 1) </math>. |
− | <math> \sin x \cos x = \frac{1}{10} </math> | + | :<math> \log_{10} (\sin x + \cos x) = \frac{1}{2}(\log_{10} n - \log_{10} 10) </math> |
− | <math> \log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n | + | :<math> \log_{10} (\sin x + \cos x) = \frac{1}{2}(\log_{10} \frac{n}{10}) </math> |
− | <math> \log_{10} (\sin x + \cos x) = \ | + | :<math> \log_{10} (\sin x + \cos x) = \left(\log_{10} \sqrt{\frac{n}{10}}\right) </math> |
− | <math> | + | :<math> \sin x + \cos x = \sqrt{\frac{n}{10}} </math> |
− | <math> | + | :<math> (\sin x + \cos x)^{2} = \left(\sqrt{\frac{n}{10}}\right)^2 </math> |
− | <math> \sin x + \cos x = | + | :<math> \sin^2 x + \cos^2 x +2 \sin x \cos x= \frac{n}{10} </math> |
− | <math> | + | <math>\displaystyle \sin ^2 x + \cos ^2 x = 1</math>, and we can substitute the value for <math>\displaystyle \sin x \cos x</math> from above. |
− | <math> | + | :<math> 1 + 2(\frac{1}{10}) = \frac{n}{10} </math> |
− | <math> | + | :<math> \frac{12}{10} = \frac{n}{10} </math> |
− | + | Thus, the solution is <math> n = 012 </math>. | |
− | |||
− | <math> n = 012 </math> | ||
== See also == | == See also == | ||
− | |||
− | |||
− | |||
* [[Logarithm]] | * [[Logarithm]] | ||
* [[Trigonometry]] | * [[Trigonometry]] | ||
+ | {{AIME box|year=2003|n=I|num-b=3|num-a=5}} | ||
[[Category:Intermediate Algebra Problems]] | [[Category:Intermediate Algebra Problems]] | ||
[[Category:Intermediate Trigonometry Problems]] | [[Category:Intermediate Trigonometry Problems]] |
Revision as of 15:48, 8 March 2007
Problem
Given that and that find
Solution
The first equation, , can be combined under the properties of logarithms to . Therefore, .
Now, manipulate the second equation, .
, and we can substitute the value for from above.
Thus, the solution is .
See also
2003 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |