Difference between revisions of "1960 AHSME Problems/Problem 1"

(Created page with "==Problem== If <math>2</math> is a solution (root) of <math>x^3+hx+10=0</math>, then <math>h</math> equals: <math>\textbf{(A)}10\qquad \textbf{(B )}9 \qquad \textbf{(C )}2\qq...")
 
 
(3 intermediate revisions by 3 users not shown)
Line 2: Line 2:
 
If <math>2</math> is a solution (root) of <math>x^3+hx+10=0</math>, then <math>h</math> equals:
 
If <math>2</math> is a solution (root) of <math>x^3+hx+10=0</math>, then <math>h</math> equals:
  
<math>\textbf{(A)}10\qquad \textbf{(B )}9 \qquad \textbf{(C )}2\qquad \textbf{(D )}-2\qquad \textbf{(E )}-9</math>
+
<math>\textbf{(A) }10\qquad \textbf{(B) }9 \qquad \textbf{(C) }2\qquad \textbf{(D) }-2\qquad \textbf{(E) }-9</math>
  
 
==Solution==
 
==Solution==
Substitute <math>2</math> for <math>x</math>. We are given that this equation is true. Solving for <math>h</math> gives <math>h=-9</math>. The answer is <math>\boxed{\textbf{(E)}}</math>.
+
Substitute <math>2</math> for <math>x</math>. We are given that this equation is true. Thus,
 +
 
 +
<math>2^3+2h+10 =0</math>
 +
 
 +
<math>18+2h=0</math>
 +
 
 +
<math>2h=-18</math>
 +
 
 +
<math>h=-9</math>
 +
 
 +
Thus, the answer is <math>\boxed{\textbf{(E) }-9}</math>.
  
 
==See Also==
 
==See Also==
{{AHSME 40p box|year=1960 |before=[[1959 AHSME]]|after=[[Problem 2]]}}
+
{{AHSME 40p box|year=1960|before=[[1959 AHSME]]|num-a=2}}
 +
 
 +
 
 +
[[Category:Introductory Algebra Problems]]

Latest revision as of 13:32, 5 June 2024

Problem

If $2$ is a solution (root) of $x^3+hx+10=0$, then $h$ equals:

$\textbf{(A) }10\qquad \textbf{(B) }9 \qquad \textbf{(C) }2\qquad \textbf{(D) }-2\qquad \textbf{(E) }-9$

Solution

Substitute $2$ for $x$. We are given that this equation is true. Thus,

$2^3+2h+10 =0$

$18+2h=0$

$2h=-18$

$h=-9$

Thus, the answer is $\boxed{\textbf{(E) }-9}$.

See Also

1960 AHSC (ProblemsAnswer KeyResources)
Preceded by
1959 AHSME
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions