Difference between revisions of "2016 AMC 10A Problems/Problem 2"

m (Added 12A box for matching question)
(Video Solution)
 
(5 intermediate revisions by 5 users not shown)
Line 5: Line 5:
 
<math>\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5</math>
 
<math>\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5</math>
  
==Solution==
+
==Solution 1==
  
 
We can rewrite <math>10^{x}\cdot 100^{2x}=1000^{5}</math> as <math>10^{5x}=10^{15}</math>:
 
We can rewrite <math>10^{x}\cdot 100^{2x}=1000^{5}</math> as <math>10^{5x}=10^{15}</math>:
<cmath>10^x\cdot100^{2x}=10^x\cdot(10^2)^{2x}</cmath>
+
<cmath>\begin{split}
<cmath>10^x\cdot10^{4x}=(10^3)^5</cmath>
+
10^x\cdot100^{2x} & =10^x\cdot(10^2)^{2x} \\
<cmath>10^{5x}=10^{15}</cmath>
+
10^x\cdot10^{4x} & =(10^3)^5 \\
Since the bases are equal, we can set the exponents equal: <math>5x=15</math>. Solving gives us: <math>x = \boxed{\textbf{(C)}\;3.}</math>
+
10^{5x} & =10^{15}
 +
\end{split}</cmath>
 +
Since the bases are equal, we can set the exponents equal, giving us <math>5x=15</math>. Solving the equation gives us <math>x = \boxed{\textbf{(C)}\;3}.</math>
 +
 
 +
==Solution 2==
 +
 
 +
We can rewrite this expression as <math>\log(10^x \cdot 100^{2x})=\log(1000^5)</math> , which can be simplified to <math>\log(10^{x}\cdot10^{4x})=5\log(1000)</math>, and that can be further simplified to <math>\log(10^{5x})=5\log(10^3)</math> . This leads to <math>5x=15</math>. Solving this linear equation yields <math>x = \boxed{\textbf{(C)}\;3}.</math>
 +
 
 +
==Video Solution (HOW TO THINK CREATIVELY!!!)==
 +
https://youtu.be/-U6n2jBDqSA
 +
 
 +
~Education, the Study of Everything
 +
 
 +
 
 +
 
 +
==Video Solution==
 +
https://youtu.be/VIt6LnkV4_w?t=044
 +
 
 +
https://youtu.be/SZNMHoYzPDs
 +
 
 +
~savannahsolver
  
 
==See Also==
 
==See Also==

Latest revision as of 09:58, 16 June 2023

Problem

For what value of $x$ does $10^{x}\cdot 100^{2x}=1000^{5}$?

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Solution 1

We can rewrite $10^{x}\cdot 100^{2x}=1000^{5}$ as $10^{5x}=10^{15}$: \[\begin{split} 10^x\cdot100^{2x} & =10^x\cdot(10^2)^{2x} \\ 10^x\cdot10^{4x} & =(10^3)^5 \\ 10^{5x} & =10^{15} \end{split}\] Since the bases are equal, we can set the exponents equal, giving us $5x=15$. Solving the equation gives us $x = \boxed{\textbf{(C)}\;3}.$

Solution 2

We can rewrite this expression as $\log(10^x \cdot 100^{2x})=\log(1000^5)$ , which can be simplified to $\log(10^{x}\cdot10^{4x})=5\log(1000)$, and that can be further simplified to $\log(10^{5x})=5\log(10^3)$ . This leads to $5x=15$. Solving this linear equation yields $x = \boxed{\textbf{(C)}\;3}.$

Video Solution (HOW TO THINK CREATIVELY!!!)

https://youtu.be/-U6n2jBDqSA

~Education, the Study of Everything


Video Solution

https://youtu.be/VIt6LnkV4_w?t=044

https://youtu.be/SZNMHoYzPDs

~savannahsolver

See Also

2016 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2016 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png