Difference between revisions of "2005 AMC 12B Problems/Problem 12"

m (Solution 1)
 
(18 intermediate revisions by 8 users not shown)
Line 3: Line 3:
 
The [[quadratic equation]] <math>x^2+mx+n</math> has roots twice those of <math>x^2+px+m</math>, and none of <math>m,n,</math> and <math>p</math> is zero. What is the value of <math>n/p</math>?
 
The [[quadratic equation]] <math>x^2+mx+n</math> has roots twice those of <math>x^2+px+m</math>, and none of <math>m,n,</math> and <math>p</math> is zero. What is the value of <math>n/p</math>?
  
<math>\mathrm{(A)}\ {{{1}}} \qquad \mathrm{(B)}\ {{{2}}} \qquad \mathrm{(C)}\ {{{4}}} \qquad \mathrm{(D)}\ {{{8}}} \qquad \mathrm{(E)}\ {{{16}}}</math>
+
<math>\textbf{(A) }\ {{{1}}} \qquad \textbf{(B) }\ {{{2}}} \qquad \textbf{(C) }\ {{{4}}} \qquad \textbf{(D) }\ {{{8}}} \qquad \textbf{(E) }\ {{{16}}}</math>
  
== Solution ==
+
==Solutions==
 +
===Solution 1===
 
Let <math>x^2 + px + m = 0</math> have roots <math>a</math> and <math>b</math>. Then  
 
Let <math>x^2 + px + m = 0</math> have roots <math>a</math> and <math>b</math>. Then  
  
Line 14: Line 15:
 
<cmath>x^2 + mx + n = (x-2a)(x-2b) = x^2 - 2(a+b)x + 4ab,</cmath>
 
<cmath>x^2 + mx + n = (x-2a)(x-2b) = x^2 - 2(a+b)x + 4ab,</cmath>
  
and <math>m = -2(a+b)</math> and <math>n = 4ab</math>. Thus <math>\frac{n}{p} = \frac{4ab}{-(a+b)} = \frac{4m}{\frac{m}{2}} = \boxed{\mathrm{(D)}\ 8}</math>.  
+
and <math>m = -2(a+b)</math> and <math>n = 4ab</math>. Thus <math>\frac{n}{p} = \frac{4ab}{-(a+b)} = \frac{4m}{\frac{m}{2}} = \boxed{\textbf{(D) }8}</math>.  
  
Indeed, consider the quadratics <math>x^2 + 8x + 16 = 0,\ x^2 + 16x + 64 = 0</math>.
+
To test that this actually works, consider the quadratics <math>x^2 + 8x + 16 = 0,\ x^2 + 16x + 64 = 0</math>.
  
== Solution 2 ==
+
===Solution 2===
Realize that if first quadratic has roots twice those of the second, then the sum of its roots will be twice those of the second and the product of its roots will be four times those of the second
+
If the roots of <math>x^2 + mx + n = 0</math> are <math>2a</math> and <math>2b</math> and the roots of <math>x^2 + px + m = 0</math> are <math>a</math> and <math>b</math>, then using Vieta's formulas,
 +
<cmath>2a + 2b = -m</cmath>
 +
<cmath>a + b = -p</cmath>
 +
<cmath>2a(2b) = n</cmath>
 +
<cmath>a(b) = m</cmath>
 +
Therefore, substituting the second equation into the first equation gives
 +
<cmath>m = 2(p)</cmath>
 +
and substituting the fourth equation into the third equation gives
 +
<cmath>n = 4(m)</cmath>
 +
Therefore, <math>n = 8p</math>, so <math>\frac{n}{p}= \boxed{\textbf{(D) }8}</math>
  
Using Vieta's formula, the sum of the roots of <math>x^2 + mx + n</math> is <math>-m</math> and the product of the roots is <math>n</math>
+
== Video Solution ==
 +
https://youtu.be/3dfbWzOfJAI?t=1023
  
The sum of the roots of <math>x^2 + px + m</math> is <math>-p</math> and the product of the roots is <math>m</math>
+
~ pi_is_3.14
 
 
We now have two equations:
 
 
 
<math>-2p = -m</math>
 
 
 
and <math>4m = n</math>
 
 
 
Solving the first equation for p, we have
 
 
 
<math>p = \frac{m}{2}</math>
 
 
 
Thus $\frac{n}{p} = \frac{4m}{\frac{m}{2}} = 8
 
  
 
== See also ==
 
== See also ==
Line 42: Line 41:
 
* [[Vieta's Formulas]]
 
* [[Vieta's Formulas]]
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 01:57, 11 November 2024

The following problem is from both the 2005 AMC 12B #12 and 2005 AMC 10B #16, so both problems redirect to this page.

Problem

The quadratic equation $x^2+mx+n$ has roots twice those of $x^2+px+m$, and none of $m,n,$ and $p$ is zero. What is the value of $n/p$?

$\textbf{(A) }\ {{{1}}} \qquad \textbf{(B) }\ {{{2}}} \qquad \textbf{(C) }\ {{{4}}} \qquad \textbf{(D) }\ {{{8}}} \qquad \textbf{(E) }\ {{{16}}}$

Solutions

Solution 1

Let $x^2 + px + m = 0$ have roots $a$ and $b$. Then

\[x^2 + px + m = (x-a)(x-b) = x^2 - (a+b)x + ab,\]

so $p = -(a+b)$ and $m = ab$. Also, $x^2 + mx + n = 0$ has roots $2a$ and $2b$, so

\[x^2 + mx + n = (x-2a)(x-2b) = x^2 - 2(a+b)x + 4ab,\]

and $m = -2(a+b)$ and $n = 4ab$. Thus $\frac{n}{p} = \frac{4ab}{-(a+b)} = \frac{4m}{\frac{m}{2}} = \boxed{\textbf{(D) }8}$.

To test that this actually works, consider the quadratics $x^2 + 8x + 16 = 0,\ x^2 + 16x + 64 = 0$.

Solution 2

If the roots of $x^2 + mx + n = 0$ are $2a$ and $2b$ and the roots of $x^2 + px + m = 0$ are $a$ and $b$, then using Vieta's formulas, \[2a + 2b = -m\] \[a + b = -p\] \[2a(2b) = n\] \[a(b) = m\] Therefore, substituting the second equation into the first equation gives \[m = 2(p)\] and substituting the fourth equation into the third equation gives \[n = 4(m)\] Therefore, $n = 8p$, so $\frac{n}{p}= \boxed{\textbf{(D) }8}$

Video Solution

https://youtu.be/3dfbWzOfJAI?t=1023

~ pi_is_3.14

See also

2005 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2005 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png