Difference between revisions of "2005 AMC 10A Problems/Problem 21"
(→Solution) |
Dairyqueenxd (talk | contribs) (→Solution) |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 2: | Line 2: | ||
For how many positive integers <math>n</math> does <math> 1+2+...+n </math> evenly divide from <math>6n</math>? | For how many positive integers <math>n</math> does <math> 1+2+...+n </math> evenly divide from <math>6n</math>? | ||
− | <math> \ | + | <math> \textbf{(A) } 3\qquad \textbf{(B) } 5\qquad \textbf{(C) } 7\qquad \textbf{(D) } 9\qquad \textbf{(E) } 11 </math> |
− | ==Solution | + | == Solution == |
If <math> 1+2+...+n </math> evenly [[divide]]s <math>6n</math>, then <math>\frac{6n}{1+2+...+n}</math> is an [[integer]]. | If <math> 1+2+...+n </math> evenly [[divide]]s <math>6n</math>, then <math>\frac{6n}{1+2+...+n}</math> is an [[integer]]. | ||
− | Since <math> 1+2+...+n = \frac{n(n+1)}{2} </math> we may substitute the [[RHS]] in the above [[fraction]]. | + | Since <math> 1+2+...+n = \frac{n(n+1)}{2} </math> we may substitute the [[RHS]] in the above [[fraction]]. So the problem asks us for how many [[positive integer]]s <math>n</math> is <math>\frac{6n}{\frac{n(n+1)}{2}}=\frac{12}{n+1}</math> an integer, or equivalently when <math>k(n+1) = 12</math> for a positive integer <math>k</math>. |
− | |||
− | So the problem asks us for how many [[positive integer]]s <math>n</math> is <math>\frac{6n}{\frac{n(n+1)}{2}}=\frac{12}{n+1}</math> an integer. | ||
<math>\frac{12}{n+1}</math> is an integer when <math>n+1</math> is a [[divisor |factor]] of <math>12</math>. | <math>\frac{12}{n+1}</math> is an integer when <math>n+1</math> is a [[divisor |factor]] of <math>12</math>. | ||
− | The factors of <math>12</math> are <math>1 | + | The factors of <math>12</math> are <math>1, 2, 3, 4, 6,</math> and <math>12</math>, so the possible values of <math>n</math> are <math>0, 1, 2, 3, 5,</math> and <math>11</math>. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | But since <math>0</math> isn't a positive integer, only <math>1, 2, 3, 5,</math> and <math>11</math> are the possible values of <math>n</math>. Therefore the number of possible values of <math>n</math> is <math>\boxed{\textbf{(B) }5}</math>. | |
− | |||
− | + | ==Video Solution== | |
+ | CHECK OUT Video Solution: https://youtu.be/WRv86DHa3zY | ||
− | + | ==See also== | |
+ | {{AMC10 box|year=2005|ab=A|num-b=20|num-a=22}} | ||
[[Category:Introductory Number Theory Problems]] | [[Category:Introductory Number Theory Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 11:54, 14 December 2021
Contents
Problem
For how many positive integers does evenly divide from ?
Solution
If evenly divides , then is an integer.
Since we may substitute the RHS in the above fraction. So the problem asks us for how many positive integers is an integer, or equivalently when for a positive integer .
is an integer when is a factor of .
The factors of are and , so the possible values of are and .
But since isn't a positive integer, only and are the possible values of . Therefore the number of possible values of is .
Video Solution
CHECK OUT Video Solution: https://youtu.be/WRv86DHa3zY
See also
2005 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.