Difference between revisions of "2025 AIME II Problems/Problem 1"

m
m (Minor edit)
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
 
Six points <math>A, B, C, D, E,</math> and <math>F</math> lie in a straight line in that order. Suppose that <math>G</math> is a point not on the line and that <math>AC=26, BD=22, CE=31, DF=33, AF=73, CG=40,</math> and <math>DG=30.</math> Find the area of <math>\triangle BGE.</math>
 
Six points <math>A, B, C, D, E,</math> and <math>F</math> lie in a straight line in that order. Suppose that <math>G</math> is a point not on the line and that <math>AC=26, BD=22, CE=31, DF=33, AF=73, CG=40,</math> and <math>DG=30.</math> Find the area of <math>\triangle BGE.</math>
  
==Solution 1==
+
== Solution 1 ==
 +
 
 
<asy>
 
<asy>
 
pair A,B,C,D,E,F,G;
 
pair A,B,C,D,E,F,G;
Line 25: Line 27:
 
</asy>
 
</asy>
  
Let <math>AB=a</math>, <math>BC=b</math>, <math>CD=c</math>, <math>DE=d</math> and <math>EF=e</math>. Then we know that <math>a+b+c+d+e</math>=73, <math>a+b=26</math>, <math>b+c=22</math>, <math>c+d=31</math> and <math>d+e=33</math>. From this we can easily deduce <math>c=14</math> and <math>a+e=34</math> thus <math>b+c+d=39</math>. Using Heron's formula we can calculate the area of <math>\triangle{CGD}</math> to be <math>\sqrt{(42)(28)(12)(2)}=168</math>, and since the base of <math>\triangle{BGE}</math> is <math>\frac{39}{14}</math> of that of <math>\triangle{CGD}</math>, we calculate the area of <math>\triangle{BGE}</math> to be <math>168\times \frac{39}{14}=\boxed{468}</math>.
+
Let <math>AB=a</math>, <math>BC=b</math>, <math>CD=c</math>, <math>DE=d</math> and <math>EF=e</math>. Then we know that <math>a+b+c+d+e=73</math>, <math>a+b=26</math>, <math>b+c=22</math>, <math>c+d=31</math> and <math>d+e=33</math>. From this we can easily deduce <math>c=14</math> and <math>a+e=34</math> thus <math>b+c+d=39</math>. Using Heron's formula we can calculate the area of <math>\triangle{CGD}</math> to be <math>\sqrt{(42)(28)(12)(2)}=168</math>, and since the base of <math>\triangle{BGE}</math> is <math>\frac{39}{14}</math> of that of <math>\triangle{CGD}</math>, we calculate the area of <math>\triangle{BGE}</math> to be <math>168\times \frac{39}{14}=\boxed{468}</math>.
 +
 
 +
~ Quick Asymptote Fix by [[User:Eevee9406|eevee9406]], edited by [[User:Aoum|aoum]]
 +
 
 +
== Solution 2 (Law of Cosines) ==
 +
 
 +
We need to solve for the lengths of <math>AB</math>, <math>BC</math>, <math>CD</math>, <math>DE</math>, and <math>EF</math>. 
 +
Let <math>AB = a</math>, <math>BC = b</math>, <math>CD = c</math>, <math>DE = d</math>, and <math>EF = e</math>. 
 +
We are given the following system of equations:
 +
 
 +
<cmath>a + b = 26, \quad b + c = 22, \quad c + d = 31, \quad d + e = 33, \quad a + b + c + d + e = 73.</cmath>
 +
 
 +
Substituting <math>a + b = 26</math> and <math>d + e = 33</math> into the equation <math>a + b + c + d + e = 73</math>, we get:
 +
 
 +
<cmath>c = 14.</cmath>
 +
 
 +
Thus, we have:
 +
 
 +
<cmath>a = 18, \quad b = 8, \quad c = 14, \quad d = 17, \quad e = 16.</cmath>
 +
 
 +
Next, consider triangle <math>CDG</math>, where <math>CD = 14</math>, <math>CG = 40</math>, and <math>DG = 30</math>. 
 +
By the Law of Cosines, we have:
 +
 
 +
<cmath>CD^2 = CG^2 + DG^2 - 2 \times CG \times DG \times \cos(\angle CGD).</cmath>
 +
 
 +
Substituting the known values:
 +
 
 +
<cmath>14^2 = 40^2 + 30^2 - 2 \times 40 \times 30 \times \cos(\angle CGD).</cmath>
 +
 
 +
Simplifying:
 +
 
 +
<cmath>196 = 1600 + 900 - 2400 \cos(\angle CGD).</cmath>
 +
 
 +
<cmath>2400 \cos(\angle CGD) = 2500 - 196 = 2304.</cmath>
 +
 
 +
<cmath>\cos(\angle CGD) = \frac{24}{25}.</cmath>
 +
 
 +
Therefore, we can find <math>\sin(\angle CGD)</math> using the identity <math>\sin^2 \theta + \cos^2 \theta = 1</math>:
 +
 
 +
<cmath>\sin(\angle CGD) = \sqrt{1 - \left(\frac{24}{25}\right)^2} = \frac{7}{25}.</cmath>
 +
 
 +
Now, the area of triangle <math>CDG</math> is
 +
 
 +
<cmath>\frac{1}{2} \times 40 \times 30 \times \frac{7}{25} = 168.</cmath>
  
~quick Asymptote fix by eevee9406
+
Noting that the height of triangle <math>CDG</math> is the same as the height of triangle <math>BGE</math>, the ratio of the areas of the two triangles will be the same as the ratio of their corresponding lengths. Therefore, the answer is
  
== Solution 2 (Law of Cosines)==
+
<cmath>\frac{168 \times 39}{14} = \boxed{468}.</cmath>
  
We need to solve the lengths of AB, BC, CD, DE and EF.
+
(Feel free to add or correct any LaTeX and formatting)
Let AB = a, BC = b, CD = c, DE = d and EF = e
 
a + b = 26, b + c = 22, c + d = 31, d + e = 33, a + b + c + d + e = 73
 
Substituting a + b = 26 and d + e = 33 into a + b + c + d + e = 73, c = 14
 
Therefore, we get a = 18, b = 8, c = 14, d = 17 and e = 16
 
Noting that triangle CDG has CD = 14, CG = 40 and DG = 30,
 
14^2 = 40^2 + 30^2 - 2 * 40 * 30 * cos(angle CGD)
 
2 * 40 * 30 * cos(angle CGD) = 2500 - 196 = 2304
 
cos(angle CGD) = 24/25, therefore sin(angle CGD)
 
The area for triangle CDG = 1/2 * 40 * 30 * 7/25 = 168
 
Noting that the height of the triangle CDG would be the exact same height as the triangle as triangle BGE, the ratio of the length would be the ratio of area. Therefore, the answer would be given by 168 * 39 / 14 = 468
 
  
(Feel free to correct any latex and formats)
+
~ Mitsuihisashi14, edited by [[User:Aoum|aoum]]
~Mitsuihisashi14
+
 
 +
== See also ==
  
==See also==
 
 
{{AIME box|year=2025|before=First Problem|num-a=2|n=II}}
 
{{AIME box|year=2025|before=First Problem|num-a=2|n=II}}
 
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 14:35, 15 February 2025

Problem

Six points $A, B, C, D, E,$ and $F$ lie in a straight line in that order. Suppose that $G$ is a point not on the line and that $AC=26, BD=22, CE=31, DF=33, AF=73, CG=40,$ and $DG=30.$ Find the area of $\triangle BGE.$

Solution 1

[asy] pair A,B,C,D,E,F,G; A=(0,0); label("$A$", A, S); B=(1.5,0); label("$B$", B, S); C=(2.9,0); label("$C$", C, S); D=(4.2,0); label("$D$", D, S); E=(5.3,0); label("$E$", E, S); F=(6.5,0); label("$F$", F, S); G=(3.7,3); label("$G$", G, N);  draw(A--B--C--D--E--F); draw(C--G--D); draw(B--G--E); [/asy]

Let $AB=a$, $BC=b$, $CD=c$, $DE=d$ and $EF=e$. Then we know that $a+b+c+d+e=73$, $a+b=26$, $b+c=22$, $c+d=31$ and $d+e=33$. From this we can easily deduce $c=14$ and $a+e=34$ thus $b+c+d=39$. Using Heron's formula we can calculate the area of $\triangle{CGD}$ to be $\sqrt{(42)(28)(12)(2)}=168$, and since the base of $\triangle{BGE}$ is $\frac{39}{14}$ of that of $\triangle{CGD}$, we calculate the area of $\triangle{BGE}$ to be $168\times \frac{39}{14}=\boxed{468}$.

~ Quick Asymptote Fix by eevee9406, edited by aoum

Solution 2 (Law of Cosines)

We need to solve for the lengths of $AB$, $BC$, $CD$, $DE$, and $EF$. Let $AB = a$, $BC = b$, $CD = c$, $DE = d$, and $EF = e$. We are given the following system of equations:

\[a + b = 26, \quad b + c = 22, \quad c + d = 31, \quad d + e = 33, \quad a + b + c + d + e = 73.\]

Substituting $a + b = 26$ and $d + e = 33$ into the equation $a + b + c + d + e = 73$, we get:

\[c = 14.\]

Thus, we have:

\[a = 18, \quad b = 8, \quad c = 14, \quad d = 17, \quad e = 16.\]

Next, consider triangle $CDG$, where $CD = 14$, $CG = 40$, and $DG = 30$. By the Law of Cosines, we have:

\[CD^2 = CG^2 + DG^2 - 2 \times CG \times DG \times \cos(\angle CGD).\]

Substituting the known values:

\[14^2 = 40^2 + 30^2 - 2 \times 40 \times 30 \times \cos(\angle CGD).\]

Simplifying:

\[196 = 1600 + 900 - 2400 \cos(\angle CGD).\]

\[2400 \cos(\angle CGD) = 2500 - 196 = 2304.\]

\[\cos(\angle CGD) = \frac{24}{25}.\]

Therefore, we can find $\sin(\angle CGD)$ using the identity $\sin^2 \theta + \cos^2 \theta = 1$:

\[\sin(\angle CGD) = \sqrt{1 - \left(\frac{24}{25}\right)^2} = \frac{7}{25}.\]

Now, the area of triangle $CDG$ is

\[\frac{1}{2} \times 40 \times 30 \times \frac{7}{25} = 168.\]

Noting that the height of triangle $CDG$ is the same as the height of triangle $BGE$, the ratio of the areas of the two triangles will be the same as the ratio of their corresponding lengths. Therefore, the answer is

\[\frac{168 \times 39}{14} = \boxed{468}.\]

(Feel free to add or correct any LaTeX and formatting)

~ Mitsuihisashi14, edited by aoum

See also

2025 AIME II (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png