Difference between revisions of "2025 AMC 8 Problems/Problem 13"

(Solution)
 
(7 intermediate revisions by 4 users not shown)
Line 2: Line 2:
  
 
Each of the even numbers <math>2, 4, 6, \ldots, 50</math> is divided by <math>7</math>. The remainders are recorded. Which histogram displays the number of times each remainder occurs?
 
Each of the even numbers <math>2, 4, 6, \ldots, 50</math> is divided by <math>7</math>. The remainders are recorded. Which histogram displays the number of times each remainder occurs?
 +
 +
 +
 +
==Solution==
 +
 +
Let's take the numbers 2 through 14 (evens). The remainders will be 2, 4, 6, 1, 3, 5, and 0. This sequence keeps repeating itself over and over. We can take floor(50/14) = 3, so after the number 42, every remainder has been achieved 3 times. However, since 44, 46, 48, and 50 are left, the remainders of those will be 2, 4, 6, and 1 respectively. The only histogram in which those 4 numbers are set at 4 is histogram <math>\boxed{\text{(A)}}</math>.
 +
 +
~Sigmacuber
 +
 +
==Solution 2==
 +
 +
Writing down all the remainders gives us
 +
 +
<cmath>
 +
2, 4, 6, 1, 3, 5, 0, 2, 4, 6, 1, 3, 5, 0, 2, 4, 6, 1, 3, 5, 0, 2, 4, 6, 1.
 +
</cmath>
 +
 +
In this list, there are <math>3</math> numbers with remainder <math>0</math>, <math>4</math> numbers with remainder <math>1</math>, <math>4</math> numbers with remainder <math>2</math>, <math>3</math> numbers with remainder <math>3</math>, <math>4</math> numbers with remainder <math>4</math>, <math>3</math> numbers with remainder <math>5</math>, and <math>4</math> numbers with remainder <math>6</math>. Manually computation of every single term can be avoided by recognizing the pattern alternates from <math>0, 2, 4, 6</math> to <math>1, 3, 5</math> and there are <math>25</math> terms. The only histogram that matches this is <math>\boxed{\textbf{(A)}}</math>.
 +
 +
~alwaysgonnagiveyouup
 +
 +
==Video Solution by Thinking Feet==
 +
https://youtu.be/PKMpTS6b988
 +
 +
==See Also==
 +
{{AMC8 box|year=2025|num-b=12|num-a=14}}
 +
{{MAA Notice}}

Latest revision as of 00:24, 31 January 2025

Problem

Each of the even numbers $2, 4, 6, \ldots, 50$ is divided by $7$. The remainders are recorded. Which histogram displays the number of times each remainder occurs?


Solution

Let's take the numbers 2 through 14 (evens). The remainders will be 2, 4, 6, 1, 3, 5, and 0. This sequence keeps repeating itself over and over. We can take floor(50/14) = 3, so after the number 42, every remainder has been achieved 3 times. However, since 44, 46, 48, and 50 are left, the remainders of those will be 2, 4, 6, and 1 respectively. The only histogram in which those 4 numbers are set at 4 is histogram $\boxed{\text{(A)}}$.

~Sigmacuber

Solution 2

Writing down all the remainders gives us

\[2, 4, 6, 1, 3, 5, 0, 2, 4, 6, 1, 3, 5, 0, 2, 4, 6, 1, 3, 5, 0, 2, 4, 6, 1.\]

In this list, there are $3$ numbers with remainder $0$, $4$ numbers with remainder $1$, $4$ numbers with remainder $2$, $3$ numbers with remainder $3$, $4$ numbers with remainder $4$, $3$ numbers with remainder $5$, and $4$ numbers with remainder $6$. Manually computation of every single term can be avoided by recognizing the pattern alternates from $0, 2, 4, 6$ to $1, 3, 5$ and there are $25$ terms. The only histogram that matches this is $\boxed{\textbf{(A)}}$.

~alwaysgonnagiveyouup

Video Solution by Thinking Feet

https://youtu.be/PKMpTS6b988

See Also

2025 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png