Difference between revisions of "1957 AHSME Problems/Problem 47"

(created solution page)
 
(Solution)
 
Line 43: Line 43:
  
 
== Solution ==
 
== Solution ==
<math>\boxed{\textbf{(A) }r\sqrt2}</math>.
+
Because <math>\overline{XY}</math> is a diameter of the circle and <math>\overline{AB} \perp \overline{XY}</math>, we know that <math>\overline{XY}</math> bisects <math>\overline{AB}</math>, so <math>AQ=BQ</math>. Thus, <math>M</math> is on the [[Perpendicular bisector#Locus|perpendicular bisector]] of <math>\overline{AB}</math>, and so <math>AM=BM</math>. Furthermore, by [[Thales' Theorem]], <math>\measuredangle AMB = 90^{\circ}</math>. Thus, because <math>\triangle AMB</math> is a right isosceles triangle with <math>AM=BM</math>, it is a [[45-45-90 triangle]]. Thus, <math>\measuredangle ABM = 45^{\circ}</math>. Now, draw <math>\overline{OA}</math> and <math>\overline{OD}</math>. Because <math>\angle ABD \cong \angle ABM</math> is an [[inscribed angle]] which intercepts minor arc <math>AD</math>, the measure of [[central angle]] <math>\angle AOD</math> must be <math>2\measuredangle ABD = 2 \cdot 45^{\circ} = 90^{\circ}</math>. Because <math>OA=OD=r</math>, <math>\triangle AOD</math> is also a <math>45</math>-<math>45</math>-<math>90</math> triangle, so <math>AD=\boxed{\textbf{(A) }r\sqrt2}</math>.
  
 
== See Also ==
 
== See Also ==

Latest revision as of 12:40, 27 July 2024

Problem

In circle $O$, the midpoint of radius $OX$ is $Q$; at $Q$, $\overline{AB} \perp \overline{XY}$. The semi-circle with $\overline{AB}$ as diameter intersects $\overline{XY}$ in $M$. Line $\overline{AM}$ intersects circle $O$ in $C$, and line $\overline{BM}$ intersects circle $O$ in $D$. Line $\overline{AD}$ is drawn. Then, if the radius of circle $O$ is $r$, $AD$ is:

[asy] defaultpen(linewidth(.8pt)); unitsize(2.5cm); real m = 0; real b = 0; pair O = origin; pair X = (-1,0); pair Y = (1,0); pair Q = midpoint(O--X); pair A = (Q.x, -1*sqrt(3)/2); pair B = (Q.x, -1*A.y); pair M = (Q.x + sqrt(3)/2,0); m = (B.y - M.y)/(B.x - M.x); b = (B.y - m*B.x); pair D = intersectionpoint(Circle(O,1),M--(1.5,1.5*m + b)); m = (A.y - M.y)/(A.x - M.x); b = (A.y - m*A.x); pair C = intersectionpoint(Circle(O,1),M--(1.5,1.5*m + b)); draw(Circle(O,1)); draw(Arc(Q,sqrt(3)/2,-90,90)); draw(A--B); draw(X--Y); draw(B--D); draw(A--C); draw(A--D); dot(O);dot(M); label("$B$",B,NW); label("$C$",C,NE); label("$Y$",Y,E); label("$D$",D,SE); label("$A$",A,SW); label("$X$",X,W); label("$Q$",Q,SW); label("$O$",O,SW); label("$M$",M,NE+2N);[/asy]

$\textbf{(A)}\ r\sqrt{2}\qquad\textbf{(B)}\ r\qquad\textbf{(C)}\ \text{not a side of an inscribed regular polygon}\qquad\textbf{(D)}\ \frac{r\sqrt{3}}{2}\qquad\textbf{(E)}\ r\sqrt{3}$

Solution

Because $\overline{XY}$ is a diameter of the circle and $\overline{AB} \perp \overline{XY}$, we know that $\overline{XY}$ bisects $\overline{AB}$, so $AQ=BQ$. Thus, $M$ is on the perpendicular bisector of $\overline{AB}$, and so $AM=BM$. Furthermore, by Thales' Theorem, $\measuredangle AMB = 90^{\circ}$. Thus, because $\triangle AMB$ is a right isosceles triangle with $AM=BM$, it is a 45-45-90 triangle. Thus, $\measuredangle ABM = 45^{\circ}$. Now, draw $\overline{OA}$ and $\overline{OD}$. Because $\angle ABD \cong \angle ABM$ is an inscribed angle which intercepts minor arc $AD$, the measure of central angle $\angle AOD$ must be $2\measuredangle ABD = 2 \cdot 45^{\circ} = 90^{\circ}$. Because $OA=OD=r$, $\triangle AOD$ is also a $45$-$45$-$90$ triangle, so $AD=\boxed{\textbf{(A) }r\sqrt2}$.

See Also

1957 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 46
Followed by
Problem 48
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png