Difference between revisions of "2006 Cyprus MO/Lyceum/Problem 3"
I like pie (talk | contribs) m (→Solution) |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | The domain of the function <math>f(x)=\sqrt{4+2x}</math> is | + | The [[domain]] of the [[function]] <math>f(x)=\sqrt{4+2x}</math> is |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | <math>\mathrm{(A)}\ (-2,+\infty)\qquad\mathrm{(B)}\ [0,+\infty)\qquad\mathrm{(C)}\ [-2,+\infty)\qquad\mathrm{(D)}\ [-2,0]\qquad\mathrm{(E)}\ \mathbb{R}</math> | ||
==Solution== | ==Solution== | ||
− | 2x+4 must be non-negative | + | <math>2x+4</math> must be non-negative, so <math>x+2</math> must be non-negative. Therefore, all <math>x\ge-2</math> are in the domain <math>\mathrm{(C)}</math>. |
==See also== | ==See also== | ||
{{CYMO box|year=2006|l=Lyceum|num-b=2|num-a=4}} | {{CYMO box|year=2006|l=Lyceum|num-b=2|num-a=4}} |
Latest revision as of 09:50, 27 April 2008
Problem
Solution
must be non-negative, so must be non-negative. Therefore, all are in the domain .
See also
2006 Cyprus MO, Lyceum (Problems) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 |