Difference between revisions of "2006 Cyprus MO/Lyceum/Problem 6"

m (Problem)
(Standardized answer choices; minor edits)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
{{empty}}
+
The value of the expression <math>K=\sqrt{19+8\sqrt{3}}-\sqrt{7+4\sqrt{3}}</math> is
 +
 
 +
<math>\mathrm{(A)}\ 4\qquad\mathrm{(B)}\ 4\sqrt{3}\qquad\mathrm{(C)}\ 12+4\sqrt{3}\qquad\mathrm{(D)}\ -2\qquad\mathrm{(E)}\ 2</math>
  
 
==Solution==
 
==Solution==
{{solution}}
+
Suppose that <math>19 + 8\sqrt{3}</math> can be written in the form of <math>(a+b\sqrt{3})^2</math>, in order to eliminate the [[square root]].
 +
 
 +
Then <math>19 = a^2 + 3b^2</math> and <math>2ab\sqrt{3} = 8\sqrt{3} \Longrightarrow ab = 4</math>, and we quickly find that <math>19 + 8\sqrt{3} = (4+\sqrt{3})^2</math>.
 +
 
 +
Doing the same on the second radical gets us <math>(2 + \sqrt{3})^2</math>.
 +
 
 +
Thus the expression evaluates to <math>\sqrt{(4+ \sqrt{3})^2} - \sqrt{(2 + \sqrt{3})^2} = 4 + \sqrt{3} - 2 - \sqrt{3} = 2\ \mathrm{(E)}</math>.
  
 
==See also==
 
==See also==
 
{{CYMO box|year=2006|l=Lyceum|num-b=5|num-a=7}}
 
{{CYMO box|year=2006|l=Lyceum|num-b=5|num-a=7}}
 +
 +
[[Category:Introductory Algebra Problems]]

Latest revision as of 09:43, 27 April 2008

Problem

The value of the expression $K=\sqrt{19+8\sqrt{3}}-\sqrt{7+4\sqrt{3}}$ is

$\mathrm{(A)}\ 4\qquad\mathrm{(B)}\ 4\sqrt{3}\qquad\mathrm{(C)}\ 12+4\sqrt{3}\qquad\mathrm{(D)}\ -2\qquad\mathrm{(E)}\ 2$

Solution

Suppose that $19 + 8\sqrt{3}$ can be written in the form of $(a+b\sqrt{3})^2$, in order to eliminate the square root.

Then $19 = a^2 + 3b^2$ and $2ab\sqrt{3} = 8\sqrt{3} \Longrightarrow ab = 4$, and we quickly find that $19 + 8\sqrt{3} = (4+\sqrt{3})^2$.

Doing the same on the second radical gets us $(2 + \sqrt{3})^2$.

Thus the expression evaluates to $\sqrt{(4+ \sqrt{3})^2} - \sqrt{(2 + \sqrt{3})^2} = 4 + \sqrt{3} - 2 - \sqrt{3} = 2\ \mathrm{(E)}$.

See also

2006 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30