Difference between revisions of "2022 AMC 10A Problems/Problem 6"

(Solution)
(Video Solution 1 (Quick and Easy))
 
(10 intermediate revisions by 6 users not shown)
Line 5: Line 5:
 
<math>\textbf{(A) } 3-2a \qquad \textbf{(B) } 1-a \qquad \textbf{(C) } 1 \qquad \textbf{(D) } a+1 \qquad \textbf{(E) } 3</math>
 
<math>\textbf{(A) } 3-2a \qquad \textbf{(B) } 1-a \qquad \textbf{(C) } 1 \qquad \textbf{(D) } a+1 \qquad \textbf{(E) } 3</math>
  
== Solution ==  
+
== Solution 1 ==  
 
We have  
 
We have  
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
\left|a-2-\sqrt{(a-1)^2}\right| &= \left|a-2-|a-1|\right| \\
 
\left|a-2-\sqrt{(a-1)^2}\right| &= \left|a-2-|a-1|\right| \\
&=\left|a-2-(-a+1)\right| \\
+
&=\left|a-2-(1-a)\right| \\
 
&=\left|2a-3\right| \\
 
&=\left|2a-3\right| \\
 
&=\boxed{\textbf{(A) } 3-2a}.
 
&=\boxed{\textbf{(A) } 3-2a}.
Line 16: Line 16:
  
 
== Solution 2 ==
 
== Solution 2 ==
WLOG, assume <math>a=-1.</math> Then, the given expression simplifies to <math>5</math>:
+
Assume that <math>a=-1.</math> Then, the given expression simplifies to <math>5</math>:
<cmath>\left|a-2-\sqrt{(a-1)^2}\right| = \left|-1-2-\sqrt{(-1-1)^2}\right|
+
<cmath>\begin{align*}
= \left|-1-2-\sqrt{4}\right|
+
\left|a-2-\sqrt{(a-1)^2}\right| &= \left|-1-2-\sqrt{(-1-1)^2}\right| \\
= \left|-1-2-2\right|
+
&= \left|-1-2-\sqrt{4}\right| \\
= 5.</cmath>
+
&= \left|-1-2-2\right| \\
 +
&= 5.
 +
\end{align*}</cmath>
 +
Then, we test each of the answer choices to see which one is equal to <math>5</math>:
  
Then, we test each of the answer choices to see which one is equal to <math>5</math>:
+
<math>\textbf{(A) } 3-2a = 3-2\cdot(-1) = 3+2 = 5.</math>  
  
<math>A:</math> <math>3-2a = 3-2\cdot(-1) = 3+2 = 5.</math>  
+
<math>\textbf{(B) } 1-a = 1-(-1) = 2 \neq 5.</math>
  
<math>B:</math> <math>1-a = 1-(-1) = 2 \neq 5.</math>
+
<math>\textbf{(C) } 1 \neq 5.</math>
  
<math>C:</math> <math>1 \neq 5.</math>
+
<math>\textbf{(D) } a+1 = -1+1 = 0 \neq 5.</math>
  
<math>D:</math> <math>a+1 = -1+1 = 0 \neq 5.</math>
+
<math>\textbf{(E) } 3 \neq 5.</math>
  
<math>E:</math> <math>3 \neq 5.</math>
+
The only answer choice equal to <math>5</math> for <math>a=-1</math> is <math>\boxed{\textbf{(A) } 3-2a}.</math>
  
The only answer choice equal to <math>5</math> for <math>a=-1</math> is <math>A</math>, so the answer is <math>\boxed{\textbf{(A) } 3-2a}.</math>
 
 
-MathWizard09
 
-MathWizard09
 +
 +
== Solution 3 ==
 +
The given function is continuous, so assume that <math>a=0.</math> Then, the given expression simplifies to <math>3.</math>
 +
 +
We test each of the answer choices and get <math>\textbf{(A) } 3-2a</math> or <math>\textbf{(E) } 3.</math>
 +
 +
We test <math>x = - 1000</math> and get  <math>\left|-1000-2- \text{positive} \right| \ne 3 \implies \boxed{\textbf{(A) } 3-2a}.</math>
 +
 +
'''vladimir.shelomovskii@gmail.com, vvsss'''
 +
 +
==Video Solution 1 (Quick and Easy)==
 +
https://youtu.be/ZWHzdrW4rvw
 +
 +
~Education, the Study of Everything
 +
 +
==Video Solution 2==
 +
https://youtu.be/XWTTtL9kW98
  
 
== See Also ==
 
== See Also ==

Latest revision as of 11:13, 25 December 2023

Problem

Which expression is equal to \[\left|a-2-\sqrt{(a-1)^2}\right|\] for $a<0?$

$\textbf{(A) } 3-2a \qquad \textbf{(B) } 1-a \qquad \textbf{(C) } 1 \qquad \textbf{(D) } a+1 \qquad \textbf{(E) } 3$

Solution 1

We have \begin{align*} \left|a-2-\sqrt{(a-1)^2}\right| &= \left|a-2-|a-1|\right| \\ &=\left|a-2-(1-a)\right| \\ &=\left|2a-3\right| \\ &=\boxed{\textbf{(A) } 3-2a}. \end{align*} ~MRENTHUSIASM

Solution 2

Assume that $a=-1.$ Then, the given expression simplifies to $5$: \begin{align*} \left|a-2-\sqrt{(a-1)^2}\right| &= \left|-1-2-\sqrt{(-1-1)^2}\right| \\ &= \left|-1-2-\sqrt{4}\right| \\ &= \left|-1-2-2\right| \\ &= 5. \end{align*} Then, we test each of the answer choices to see which one is equal to $5$:

$\textbf{(A) } 3-2a = 3-2\cdot(-1) = 3+2 = 5.$

$\textbf{(B) } 1-a = 1-(-1) = 2 \neq 5.$

$\textbf{(C) } 1 \neq 5.$

$\textbf{(D) } a+1 = -1+1 = 0 \neq 5.$

$\textbf{(E) } 3 \neq 5.$

The only answer choice equal to $5$ for $a=-1$ is $\boxed{\textbf{(A) } 3-2a}.$

-MathWizard09

Solution 3

The given function is continuous, so assume that $a=0.$ Then, the given expression simplifies to $3.$

We test each of the answer choices and get $\textbf{(A) } 3-2a$ or $\textbf{(E) } 3.$

We test $x = - 1000$ and get $\left|-1000-2- \text{positive} \right| \ne 3 \implies \boxed{\textbf{(A) } 3-2a}.$

vladimir.shelomovskii@gmail.com, vvsss

Video Solution 1 (Quick and Easy)

https://youtu.be/ZWHzdrW4rvw

~Education, the Study of Everything

Video Solution 2

https://youtu.be/XWTTtL9kW98

See Also

2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png