Difference between revisions of "2016 AIME I Problems/Problem 15"
(→Solution 1) |
|||
(10 intermediate revisions by 6 users not shown) | |||
Line 3: | Line 3: | ||
Circles <math>\omega_1</math> and <math>\omega_2</math> intersect at points <math>X</math> and <math>Y</math>. Line <math>\ell</math> is tangent to <math>\omega_1</math> and <math>\omega_2</math> at <math>A</math> and <math>B</math>, respectively, with line <math>AB</math> closer to point <math>X</math> than to <math>Y</math>. Circle <math>\omega</math> passes through <math>A</math> and <math>B</math> intersecting <math>\omega_1</math> again at <math>D \neq A</math> and intersecting <math>\omega_2</math> again at <math>C \neq B</math>. The three points <math>C</math>, <math>Y</math>, <math>D</math> are collinear, <math>XC = 67</math>, <math>XY = 47</math>, and <math>XD = 37</math>. Find <math>AB^2</math>. | Circles <math>\omega_1</math> and <math>\omega_2</math> intersect at points <math>X</math> and <math>Y</math>. Line <math>\ell</math> is tangent to <math>\omega_1</math> and <math>\omega_2</math> at <math>A</math> and <math>B</math>, respectively, with line <math>AB</math> closer to point <math>X</math> than to <math>Y</math>. Circle <math>\omega</math> passes through <math>A</math> and <math>B</math> intersecting <math>\omega_1</math> again at <math>D \neq A</math> and intersecting <math>\omega_2</math> again at <math>C \neq B</math>. The three points <math>C</math>, <math>Y</math>, <math>D</math> are collinear, <math>XC = 67</math>, <math>XY = 47</math>, and <math>XD = 37</math>. Find <math>AB^2</math>. | ||
+ | ==Solution== | ||
+ | Using the radical axis theorem, the lines <math>\overline{AD}, \overline{BC}, \overline{XY}</math> are all concurrent at one point, call it <math>F</math>. Now recall by Miquel's theorem in <math>\triangle FDC</math> the fact that quadrilaterals <math>DAXY</math> and <math>CBXY</math> are cyclic implies <math>FAXB</math> is cyclic as well. Denote <math>\omega_{3}\equiv(FAXB)</math> and <math>Z\equiv\ell\cap\overline{FXY}</math>. | ||
+ | |||
+ | Since point <math>Z</math> lies on the radical axis of <math>\omega_{1},\omega_{2}</math>, it has equal power with respect to both circles, thus <cmath>AZ^{2}=\text{Pow}_{\omega_{1}}(Z)=ZX\cdot ZY=\text{Pow}_{\omega_{2}}(Z)=ZB^{2}\implies AZ=ZB.</cmath> Also, notice that <cmath>AZ\cdot ZB=\text{Pow}_{\omega_{3}}(Z)=ZX\cdot ZF\implies ZY=ZF.</cmath> The diagonals of quadrilateral <math>FAYB</math> bisect each other at <math>Z</math>, so we conclude that <math>FAYB</math> is a parallelogram. Let <math>u:=ZX</math>, so that <math>ZY=ZF=u+47</math>. | ||
+ | |||
+ | Because <math>FAYB</math> is a parallelogram and quadrilaterals <math>DAXY, CBXY</math> are cyclic, <cmath>\angle DFX=\angle AFX=\angle BYX=\angle BCX=\angle FCX~~\text{and}~~\angle XDF=\angle XDA=\angle XYA=\angle XFB=\angle XFC</cmath> so we have the pair of similar triangles <math>\triangle DFX~\sim~\triangle FCX</math>. Thus <cmath>\dfrac{37}{2u+47}=\dfrac{2u+47}{67}\implies 2u+47=\sqrt{37\cdot 67}\implies u=\dfrac{1}{2}\left(\sqrt{37\cdot 67}-47\right).</cmath> Now compute <cmath>AB^{2}=4AZ^{2}=4\cdot ZX\cdot ZY=4u(u+47)=37\cdot 67-47^{2}=\textbf{270}.</cmath> | ||
+ | |||
+ | [[File:AIME 2016-I15 Geogebra Diagram.png|840px]] | ||
==Solution 1== | ==Solution 1== | ||
Line 130: | Line 138: | ||
==Solution 6 (No words)== | ==Solution 6 (No words)== | ||
− | [[File:2016 AIME I 15.png| | + | [[File:2016 AIME I 15.png|600px|right]] |
− | [[File:2016 AIME I 15b.png| | + | [[File:2016 AIME I 15b.png|600px|left]] |
− | |||
− | ''' | + | <math>AB^2 = 4 AM^2 =2x(2x+ 2 XY) =(XP - XY) (XP + XY) = XP^2 - XY^2 = XC \cdot XD - XY^2 = 67 \cdot 37 - 47^2 = \boxed{270}.</math> |
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Solution 7 (Linearity of Power of a Point)== | ||
+ | Extend <math>\overline{AD}</math> and <math>\overline{BC}</math> to meet at point <math>P</math>. Let <math>M</math> be the midpoint of segment <math>AB</math>. Then by radical axis on <math>(ADY)</math>, <math>(BCY)</math> and <math>(ABCD)</math>, <math>P</math> lies on <math>XY</math>. By the bisector lemma, <math>M</math> lies on <math>XY</math>. It is well-known that <math>P</math>, <math>A</math>, <math>X</math>, and <math>B</math> are concyclic. By Power of a point on <math>M</math> with respect to <math>(PAXB)</math> and <math>(ADY)</math>, <cmath> |\text{Pow}(M, (PAXB))| = MX \cdot MP = MA^2 = |\text{Pow}(M, (ADY))| = MX \cdot MY, </cmath> so <math>MP=MY</math>. Thus <math>AB</math> and <math>PY</math> bisect each other, so <math>PAYB</math> is a parallelogram. This implies that <cmath> \angle DAY = \angle YBC, </cmath> so by the inscribed angle theorem <math>\overline{XY}</math> bisects <math>\angle DXC</math>. | ||
+ | |||
+ | Claim: <math>AB^2 = DY \cdot YC</math>. | ||
+ | |||
+ | Proof. Define the linear function <math>f(\bullet) := \text{Pow}(\bullet, (ADY)) - \text{Pow}(\bullet, (ABCD))</math>. Since <math>\overline{BY}</math> is parallel to the radical axis <math>\overline{AD}</math> of <math>(ADY)</math> and <math>(ABCD)</math> by our previous parallelism, <math>f(B)=f(Y)</math>. Note that <math>f(B)=AB^2</math> while <math>f(Y)=DY \cdot YC</math>, so we conclude. <math>\square</math> | ||
+ | |||
+ | By Stewart's theorem on <math>\triangle DXC</math>, <math>DY \cdot YC=37 \cdot 67 - 47^2 = 270</math>, so <math>AB^2=\boxed{270}</math>. | ||
+ | |||
+ | ~ Leo.Euler | ||
+ | |||
+ | ==Video Solution by MOP 2024== | ||
+ | https://youtu.be/qFfgB15fYS8 | ||
+ | |||
+ | ~r00tsOfUnity | ||
==Video Solution== | ==Video Solution== | ||
https://youtu.be/QoVIorvv_I8 | https://youtu.be/QoVIorvv_I8 | ||
+ | |||
+ | ~MathProblemSolvingSkills.com | ||
+ | |||
+ | ==Video Solution by The Power of Logic== | ||
+ | https://youtu.be/lTZx6tp2Fvg | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2016|n=I|num-b=14|after=Last Question}} | {{AIME box|year=2016|n=I|num-b=14|after=Last Question}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 16:12, 8 January 2024
Contents
Problem
Circles and
intersect at points
and
. Line
is tangent to
and
at
and
, respectively, with line
closer to point
than to
. Circle
passes through
and
intersecting
again at
and intersecting
again at
. The three points
,
,
are collinear,
,
, and
. Find
.
Solution
Using the radical axis theorem, the lines are all concurrent at one point, call it
. Now recall by Miquel's theorem in
the fact that quadrilaterals
and
are cyclic implies
is cyclic as well. Denote
and
.
Since point lies on the radical axis of
, it has equal power with respect to both circles, thus
Also, notice that
The diagonals of quadrilateral
bisect each other at
, so we conclude that
is a parallelogram. Let
, so that
.
Because is a parallelogram and quadrilaterals
are cyclic,
so we have the pair of similar triangles
. Thus
Now compute
Solution 1
Let . By the radical axis theorem
are concurrent, say at
. Moreover,
by simple angle chasing. Let
. Then
Now,
, and by power of a point,
Solving, we get
Solution 2
By the Radical Axis Theorem concur at point
.
Let and
intersect at
. Note that because
and
are cyclic, by Miquel's Theorem
is cyclic as well. Thus
and
Thus
and
, so
is a parallelogram. Hence
and
. But notice that
and
are similar by
Similarity, so
. But
Hence
Solution 3
First, we note that as and
have bases along the same line,
. We can also find the ratio of their areas using the circumradius area formula. If
is the radius of
and if
is the radius of
, then
Since we showed this to be
, we see that
.
We extend and
to meet at point
, and we extend
and
to meet at point
as shown below.
As
is cyclic, we know that
. But then as
is tangent to
at
, we see that
. Therefore,
, and
. A similar argument shows
. These parallel lines show
. Also, we showed that
, so the ratio of similarity between
and
is
, or rather
We can now use the parallel lines to find more similar triangles. As
, we know that
Setting
, we see that
, hence
, and the problem simplifies to finding
. Setting
, we also see that
, hence
. Also, as
, we find that
As
, we see that
, hence
.
Applying Power of a Point to point with respect to
, we find
or
. We wish to find
.
Applying Stewart's Theorem to , we find
We can cancel
from both sides, finding
. Therefore,
Solution 4
First of all, since quadrilaterals
and
are cyclic, we can let
, and
, due to the properties of cyclic quadrilaterals. In addition, let
and
. Thus,
and
. Then, since quadrilateral
is cyclic as well, we have the following sums:
Cancelling out
in the second equation and isolating
yields
. Substituting
back into the first equation, we obtain
Since
we can then imply that
. Similarly,
. So then
, so since we know that
bisects
, we can solve for
and
with Stewart’s Theorem. Let
and
. Then
Now, since
and
,
. From there, let
and
. From angle chasing we can derive that
and
. From there, since
, it is quite clear that
, and
can be found similarly. From there, since
and
, we have
similarity between
,
, and
. Therefore the length of
is the geometric mean of the lengths of
and
(from
). However,
yields the proportion
; hence, the length of
is the geometric mean of the lengths of
and
.
We can now simply use arithmetic to calculate
.
-Solution by TheBoomBox77
Solution 5 (not too different)
Let . By Radical Axes,
lies on
. Note that
is cyclic as
is the Miquel point of
in this configuration.
Claim.
Proof. We angle chase.
and
Let . Note
and
By our claim,
and
Finally,
~Mathscienceclass
Solution 6 (No words)
vladimir.shelomovskii@gmail.com, vvsss
Solution 7 (Linearity of Power of a Point)
Extend and
to meet at point
. Let
be the midpoint of segment
. Then by radical axis on
,
and
,
lies on
. By the bisector lemma,
lies on
. It is well-known that
,
,
, and
are concyclic. By Power of a point on
with respect to
and
,
so
. Thus
and
bisect each other, so
is a parallelogram. This implies that
so by the inscribed angle theorem
bisects
.
Claim: .
Proof. Define the linear function . Since
is parallel to the radical axis
of
and
by our previous parallelism,
. Note that
while
, so we conclude.
By Stewart's theorem on ,
, so
.
~ Leo.Euler
Video Solution by MOP 2024
~r00tsOfUnity
Video Solution
~MathProblemSolvingSkills.com
Video Solution by The Power of Logic
See Also
2016 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.