Difference between revisions of "2006 Cyprus MO/Lyceum/Problem 20"

 
(Standardized answer choices; style of solution)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
The sequence <math>f:N \to R</math> satisfies <math>f(n)=f(n-1)-f(n-2),\forall n\geq 3</math>.
 +
Given that <math>f(1)=f(2)=1</math>, then <math>f(3n)</math> equals
 +
 +
<math>\mathrm{(A)}\ 3\qquad\mathrm{(B)}\ -3\qquad\mathrm{(C)}\ 2\qquad\mathrm{(D)}\ 1\qquad\mathrm{(E)}\ 0</math>
  
 
==Solution==
 
==Solution==
{{solution}}
+
Lets write out a couple of terms:
 +
<cmath>
 +
\begin{align*}f(3)&=f(2)-f(1)=0&
 +
f(4)&=f(3)-f(2)=-1\\
 +
f(5)&=f(4)-f(3)=-1&
 +
f(6)&=f(5)-f(4)=0\end{align*}
 +
</cmath>
 +
We quickly see that every third term is zero, so the answer is <math>\mathrm{E}</math>.
  
 
==See also==
 
==See also==
 
{{CYMO box|year=2006|l=Lyceum|num-b=19|num-a=21}}
 
{{CYMO box|year=2006|l=Lyceum|num-b=19|num-a=21}}
 +
 +
[[Category:Introductory Algebra Problems]]

Latest revision as of 12:33, 26 April 2008

Problem

The sequence $f:N \to R$ satisfies $f(n)=f(n-1)-f(n-2),\forall n\geq 3$. Given that $f(1)=f(2)=1$, then $f(3n)$ equals

$\mathrm{(A)}\ 3\qquad\mathrm{(B)}\ -3\qquad\mathrm{(C)}\ 2\qquad\mathrm{(D)}\ 1\qquad\mathrm{(E)}\ 0$

Solution

Lets write out a couple of terms: \begin{align*}f(3)&=f(2)-f(1)=0& f(4)&=f(3)-f(2)=-1\\ f(5)&=f(4)-f(3)=-1& f(6)&=f(5)-f(4)=0\end{align*} We quickly see that every third term is zero, so the answer is $\mathrm{E}$.

See also

2006 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30