Difference between revisions of "2021 AMC 12B Problems/Problem 10"

m
(Solution)
 
(8 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 +
==Problem==
 +
Two distinct numbers are selected from the set <math>\{1,2,3,4,\dots,36,37\}</math> so that the sum of the remaining <math>35</math> numbers is the product of these two numbers. What is the difference of these two numbers?
  
The sum of the first <math>37</math> integers is given by <math>n(n+1)/2</math>, so <math>37(37+1)/2=703</math>.
+
<math>\textbf{(A) }5 \qquad \textbf{(B) }7 \qquad \textbf{(C) }8\qquad \textbf{(D) }9 \qquad \textbf{(E) }10</math>
 +
 
 +
==Solution==
 +
The sum of the first <math>n</math> integers is given by <math>\frac{n(n+1)}{2}</math>, so <math>\frac{37(37+1)}{2}=703</math>.
  
 
Therefore, <math>703-x-y=xy</math>
 
Therefore, <math>703-x-y=xy</math>
  
Rearranging, <math>xy+x+y=703</math>
+
Rearranging, <math>xy+x+y=703</math>. We can factor this equation by [[SFFT]] to get
  
 
<math>(x+1)(y+1)=704</math>
 
<math>(x+1)(y+1)=704</math>
  
Looking at the possible divisors of <math>704 = 2^6*11</math>, <math>22</math> and <math>32</math> are within the constraints of <math>0 < x <= y <= 37</math> so we try those:
+
Looking at the possible divisors of <math>704 = 2^6\cdot11</math>, <math>22</math> and <math>32</math> are within the constraints of <math>0 < x \leq y \leq 37</math> so we try those:
  
<math>(x+1)(y+1) = 22 * 32</math>
+
<math>(x+1)(y+1) = 22\cdot32</math>
  
 
<math>x+1=22, y+1 = 32</math>
 
<math>x+1=22, y+1 = 32</math>
Line 16: Line 21:
 
<math>x = 21, y = 31</math>
 
<math>x = 21, y = 31</math>
  
Therefore, the difference <math>y-x=31-21=10</math>, choice E).
+
Therefore, the difference <math>y-x=31-21=\boxed{\textbf{(E) }10}</math>.
 +
 
 
~ SoySoy4444
 
~ SoySoy4444
 +
 +
~MathFun1000 (<math>\LaTeX</math> help)
 +
 +
 +
==Video Solution (Just 2 min!)==
 +
https://youtu.be/QBRhWc8BT7U
 +
 +
<i>~Education, the Study of Everything</i>
 +
 +
==Video Solution by Punxsutawney Phil==
 +
https://YouTube.com/watch?v=yxt8-rUUosI&t=292s
 +
 +
== Video Solution by OmegaLearn (Simon's Favorite Factoring Trick) ==
 +
https://youtu.be/v8MVGAZapKU
 +
 +
~ pi_is_3.14
 +
 +
==Video Solution by Hawk Math==
 +
https://www.youtube.com/watch?v=p4iCAZRUESs
 +
 +
==Video Solution by TheBeautyofMath==
 +
https://youtu.be/kuZXQYHycdk?t=1227
 +
 +
~IceMatrix
 +
 +
==See Also==
 +
{{AMC12 box|year=2021|ab=B|num-b=9|num-a=11}}
 +
{{MAA Notice}}

Latest revision as of 15:50, 19 July 2023

Problem

Two distinct numbers are selected from the set $\{1,2,3,4,\dots,36,37\}$ so that the sum of the remaining $35$ numbers is the product of these two numbers. What is the difference of these two numbers?

$\textbf{(A) }5 \qquad \textbf{(B) }7 \qquad \textbf{(C) }8\qquad \textbf{(D) }9 \qquad \textbf{(E) }10$

Solution

The sum of the first $n$ integers is given by $\frac{n(n+1)}{2}$, so $\frac{37(37+1)}{2}=703$.

Therefore, $703-x-y=xy$

Rearranging, $xy+x+y=703$. We can factor this equation by SFFT to get

$(x+1)(y+1)=704$

Looking at the possible divisors of $704 = 2^6\cdot11$, $22$ and $32$ are within the constraints of $0 < x \leq y \leq 37$ so we try those:

$(x+1)(y+1) = 22\cdot32$

$x+1=22, y+1 = 32$

$x = 21, y = 31$

Therefore, the difference $y-x=31-21=\boxed{\textbf{(E) }10}$.

~ SoySoy4444

~MathFun1000 ($\LaTeX$ help)


Video Solution (Just 2 min!)

https://youtu.be/QBRhWc8BT7U

~Education, the Study of Everything

Video Solution by Punxsutawney Phil

https://YouTube.com/watch?v=yxt8-rUUosI&t=292s

Video Solution by OmegaLearn (Simon's Favorite Factoring Trick)

https://youtu.be/v8MVGAZapKU

~ pi_is_3.14

Video Solution by Hawk Math

https://www.youtube.com/watch?v=p4iCAZRUESs

Video Solution by TheBeautyofMath

https://youtu.be/kuZXQYHycdk?t=1227

~IceMatrix

See Also

2021 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png