|
|
(15 intermediate revisions by 10 users not shown) |
Line 1: |
Line 1: |
− | ==Problem==
| + | #REDIRECT [[2021 AMC 12B Problems/Problem 1|Solution]] |
− | How many integer values of <math>x</math> satisfy <math>|x|<3\pi</math>?
| |
− | | |
− | <math>\textbf{(A)} ~9 \qquad\textbf{(B)} ~10 \qquad\textbf{(C)} ~18 \qquad\textbf{(D)} ~19 \qquad\textbf{(E)} ~20</math>
| |
− | | |
− | ==Solution==
| |
− | Since <math>3\pi</math> is about <math>9.42</math>, we multiply 9 by 2 and add 1 to get <math> \boxed{\textbf{(D)}\ ~19} </math>~smarty101
| |
− | | |
− | ==Solution 2==
| |
− | <math>3\pi \approx 9.4.</math> There are two cases here.
| |
− | | |
− | When <math>x>0, |x|>0,</math> and <math>x = |x|.</math> So then <math>x<9.4</math>
| |
− | | |
− | When <math>x<0, |x|>0,</math> and <math>x = -|x|.</math> So then <math>-x<9.4</math>. Dividing by <math>-1</math> and flipping the sign, we get <math>x>-9.4.</math>
| |
− | | |
− | From case 1 and 2, we need <math>-9.4 < x < 9.4</math>. Since <math>x</math> is an integer, we must have <math>x</math> between <math>-9</math> and <math>9</math>. There are a total of <cmath>9-(-9) + 1 = \boxed{\textbf{(D)}\ ~19} \text{ integers}.</cmath>
| |
− | | |
− | -PureSwag
| |