Difference between revisions of "2005 AMC 12B Problems/Problem 12"

m (Solution 1)
 
(7 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
The [[quadratic equation]] <math>x^2+mx+n</math> has roots twice those of <math>x^2+px+m</math>, and none of <math>m,n,</math> and <math>p</math> is zero. What is the value of <math>n/p</math>?
 
The [[quadratic equation]] <math>x^2+mx+n</math> has roots twice those of <math>x^2+px+m</math>, and none of <math>m,n,</math> and <math>p</math> is zero. What is the value of <math>n/p</math>?
  
<math>\mathrm{(A)}\ {{{1}}} \qquad \mathrm{(B)}\ {{{2}}} \qquad \mathrm{(C)}\ {{{4}}} \qquad \mathrm{(D)}\ {{{8}}} \qquad \mathrm{(E)}\ {{{16}}}</math>
+
<math>\textbf{(A) }\ {{{1}}} \qquad \textbf{(B) }\ {{{2}}} \qquad \textbf{(C) }\ {{{4}}} \qquad \textbf{(D) }\ {{{8}}} \qquad \textbf{(E) }\ {{{16}}}</math>
  
 
==Solutions==
 
==Solutions==
Line 15: Line 15:
 
<cmath>x^2 + mx + n = (x-2a)(x-2b) = x^2 - 2(a+b)x + 4ab,</cmath>
 
<cmath>x^2 + mx + n = (x-2a)(x-2b) = x^2 - 2(a+b)x + 4ab,</cmath>
  
and <math>m = -2(a+b)</math> and <math>n = 4ab</math>. Thus <math>\frac{n}{p} = \frac{4ab}{-(a+b)} = \frac{4m}{\frac{m}{2}} = \boxed{\mathrm{(D)}\ 8}</math>.  
+
and <math>m = -2(a+b)</math> and <math>n = 4ab</math>. Thus <math>\frac{n}{p} = \frac{4ab}{-(a+b)} = \frac{4m}{\frac{m}{2}} = \boxed{\textbf{(D) }8}</math>.  
  
Indeed, consider the quadratics <math>x^2 + 8x + 16 = 0,\ x^2 + 16x + 64 = 0</math>.
+
To test that this actually works, consider the quadratics <math>x^2 + 8x + 16 = 0,\ x^2 + 16x + 64 = 0</math>.
  
 
===Solution 2===
 
===Solution 2===
Line 29: Line 29:
 
and substituting the fourth equation into the third equation gives
 
and substituting the fourth equation into the third equation gives
 
<cmath>n = 4(m)</cmath>
 
<cmath>n = 4(m)</cmath>
Therefore, <math>n = 8p</math>, so <math>\frac{n}{p} = 8 = \boxed{\textbf{D}}</math>
+
Therefore, <math>n = 8p</math>, so <math>\frac{n}{p}= \boxed{\textbf{(D) }8}</math>
  
 
== Video Solution ==
 
== Video Solution ==

Latest revision as of 01:57, 11 November 2024

The following problem is from both the 2005 AMC 12B #12 and 2005 AMC 10B #16, so both problems redirect to this page.

Problem

The quadratic equation $x^2+mx+n$ has roots twice those of $x^2+px+m$, and none of $m,n,$ and $p$ is zero. What is the value of $n/p$?

$\textbf{(A) }\ {{{1}}} \qquad \textbf{(B) }\ {{{2}}} \qquad \textbf{(C) }\ {{{4}}} \qquad \textbf{(D) }\ {{{8}}} \qquad \textbf{(E) }\ {{{16}}}$

Solutions

Solution 1

Let $x^2 + px + m = 0$ have roots $a$ and $b$. Then

\[x^2 + px + m = (x-a)(x-b) = x^2 - (a+b)x + ab,\]

so $p = -(a+b)$ and $m = ab$. Also, $x^2 + mx + n = 0$ has roots $2a$ and $2b$, so

\[x^2 + mx + n = (x-2a)(x-2b) = x^2 - 2(a+b)x + 4ab,\]

and $m = -2(a+b)$ and $n = 4ab$. Thus $\frac{n}{p} = \frac{4ab}{-(a+b)} = \frac{4m}{\frac{m}{2}} = \boxed{\textbf{(D) }8}$.

To test that this actually works, consider the quadratics $x^2 + 8x + 16 = 0,\ x^2 + 16x + 64 = 0$.

Solution 2

If the roots of $x^2 + mx + n = 0$ are $2a$ and $2b$ and the roots of $x^2 + px + m = 0$ are $a$ and $b$, then using Vieta's formulas, \[2a + 2b = -m\] \[a + b = -p\] \[2a(2b) = n\] \[a(b) = m\] Therefore, substituting the second equation into the first equation gives \[m = 2(p)\] and substituting the fourth equation into the third equation gives \[n = 4(m)\] Therefore, $n = 8p$, so $\frac{n}{p}= \boxed{\textbf{(D) }8}$

Video Solution

https://youtu.be/3dfbWzOfJAI?t=1023

~ pi_is_3.14

See also

2005 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2005 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png