Difference between revisions of "1957 AHSME Problems/Problem 5"

(Created page with "Using the properties <math>\log(x)+\log(y)=\log(xy)</math> and <math>\log(x)-\log(y)=\log(x/y)</math>, we have <cmath>\begin{align*} \log\frac ab+\log\frac bc+\log\frac cd-\lo...")
 
m (see also box)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
== Problem 5==
 +
 +
Through the use of theorems on logarithms
 +
<cmath>\log{\frac{a}{b}} + \log{\frac{b}{c}} + \log{\frac{c}{d}} - \log{\frac{ay}{dx}} </cmath>
 +
can be reduced to:
 +
 +
<math>\textbf{(A)}\ \log{\frac{y}{x}}\qquad
 +
\textbf{(B)}\ \log{\frac{x}{y}}\qquad
 +
\textbf{(C)}\ 1\qquad \\
 +
\textbf{(D)}\ 140x-24x^2+x^3\qquad
 +
\textbf{(E)}\ \text{none of these}  </math>
 +
 +
==Solution==
 
Using the properties <math>\log(x)+\log(y)=\log(xy)</math> and <math>\log(x)-\log(y)=\log(x/y)</math>, we have
 
Using the properties <math>\log(x)+\log(y)=\log(xy)</math> and <math>\log(x)-\log(y)=\log(x/y)</math>, we have
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
Line 7: Line 20:
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 
so the answer is <math>\boxed{\textbf{(B)} \log\frac xy}.</math>
 
so the answer is <math>\boxed{\textbf{(B)} \log\frac xy}.</math>
 +
 +
== See also ==
 +
 +
{{AHSME 50p box|year=1957|num-b=4|num-a=6}}
 +
{{MAA Notice}}
 +
[[Category:AHSME]][[Category:AHSME Problems]]

Latest revision as of 08:04, 25 July 2024

Problem 5

Through the use of theorems on logarithms \[\log{\frac{a}{b}} + \log{\frac{b}{c}} + \log{\frac{c}{d}} - \log{\frac{ay}{dx}}\] can be reduced to:

$\textbf{(A)}\ \log{\frac{y}{x}}\qquad  \textbf{(B)}\ \log{\frac{x}{y}}\qquad  \textbf{(C)}\ 1\qquad \\ \textbf{(D)}\ 140x-24x^2+x^3\qquad \textbf{(E)}\ \text{none of these}$

Solution

Using the properties $\log(x)+\log(y)=\log(xy)$ and $\log(x)-\log(y)=\log(x/y)$, we have \begin{align*} \log\frac ab+\log\frac bc+\log\frac cd-\log\frac{ay}{dx}&=\log\left(\frac ab\cdot\frac bc\cdot\frac cd\right)-\log \frac {ay}{dx} \\ &=\log \frac ad-\log\frac{ay}{dx} \\ &=\log\left(\frac{\frac ad}{\frac{ay}{dx}}\right) \\ &=\log \frac xy, \end{align*} so the answer is $\boxed{\textbf{(B)} \log\frac xy}.$

See also

1957 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png