Difference between revisions of "2007 AMC 8 Problems/Problem 3"

(Solution)
Line 7: Line 7:
 
== Solution ==
 
== Solution ==
  
We prime factor 250.
+
We prime factor <math>250 = 2\cdot 5^3</math>. The smallest two are <math>2</math> and <math>5</math>. <math>2+5 = \boxed{\text{C}}</math>
 
 
We get <math>2 * 5 * 5 * 5</math>
 
 
 
The two smallest are <math>2</math> and <math>5</math>.
 
 
So, <math>2 + 5 = 7</math>
 
 
 
The answer is <math> \boxed{\textbf{(C)}\ 7} </math>
 
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2007|num-b=2|num-a=4}}
 
{{AMC8 box|year=2007|num-b=2|num-a=4}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 04:55, 18 August 2016

Problem

What is the sum of the two smallest prime factors of $250$?

$\mathrm{(A)}\ 2 \qquad\mathrm{(B)}\ 5 \qquad\mathrm{(C)}\ 7 \qquad\mathrm{(D)}\ 10 \qquad\mathrm{(E)}\ 12$

Solution

We prime factor $250 = 2\cdot 5^3$. The smallest two are $2$ and $5$. $2+5 = \boxed{\text{C}}$

See Also

2007 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png