Difference between revisions of "2016 AIME I Problems/Problem 4"
(→Solution) |
(→Solution) |
||
Line 6: | Line 6: | ||
Solution by gundraja | Solution by gundraja | ||
+ | |||
+ | == See also == | ||
+ | {{AIME box|year=2016|n=I|num-b=3|num-a=5}} | ||
+ | {{MAA Notice}} |
Revision as of 17:33, 4 March 2016
Problem
A right prism with height has bases that are regular hexagons with sides of length 12. A vertex of the prism and its three adjacent vertices are the vertices of a triangular pyramid. The dihedral angle (the angle between the two planes) formed by the face of the pyramid that lies in a base of the prism and the face of the pyramid that does not contain measures degrees. Find .
Solution
Let B and C be the vertices adjacent to A on the same base as A and let D be the other vertex of the triangular pyramid. Then . Let be the foot of the altitude from to . Then since is a triangle, . Since the dihedral angle between and is , is a triangle and . Thus .
Solution by gundraja
See also
2016 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.