Difference between revisions of "2016 AMC 10A Problems/Problem 25"
m |
m (→Solution) |
||
Line 6: | Line 6: | ||
==Solution== | ==Solution== | ||
− | We prime factorize <math>72,600,</math> and <math>900</math>. The prime factorizations are <math>2^3\times 3^2</math>, <math>2^3\times 3\times 5^2</math> and <math>2^2\times 3^2\times 5^2</math>, respectively. Let <math>x=2^a\times 3^b\times 5^c</math>, <math>y=2^d\times 3^e\times 5^f</math> and <math>z=2^g\times 3^h\times 5^i</math>. We know that <cmath>\max(a,d)=3</cmath> <cmath>\max(b,e)=2</cmath> <cmath>\max(a,g)=3</cmath> <cmath>\max(b,h)=1</cmath> <cmath>\max(c,i)=2</cmath> <cmath>\max(d,g)=2</cmath> <cmath>\max(e,h)=2</cmath> and <math>c=f=0</math> since <math>\text{lcm}(x,y)</math> isn't a multiple of 5. Since <math>\max(d,g)=2</math> we know that <math>a=3</math>. We also know that since <math>\max(b,h)=1</math> that <math>e=2</math>. So now some equations have become useless to us...let's take them out. <cmath>\max(b,h)=1</cmath> <cmath>\max(d,g)=2</cmath> are the only two important ones left. We do casework on each now. If <math>\max(b,h)=1</math> then <math>(b,h)=(1,0),(0,1)</math> or <math>(1,1)</math>. Similarly if <math>\max(d,g)=2</math> then <math>(d,g)=(2,0),(2,1),(2,2),(1,2),(0,2)</math>. Thus our answer is <math>5\times 3=15</math>. | + | We prime factorize <math>72,600,</math> and <math>900</math>. The prime factorizations are <math>2^3\times 3^2</math>, <math>2^3\times 3\times 5^2</math> and <math>2^2\times 3^2\times 5^2</math>, respectively. Let <math>x=2^a\times 3^b\times 5^c</math>, <math>y=2^d\times 3^e\times 5^f</math> and <math>z=2^g\times 3^h\times 5^i</math>. We know that <cmath>\max(a,d)=3</cmath> <cmath>\max(b,e)=2</cmath> <cmath>\max(a,g)=3</cmath> <cmath>\max(b,h)=1</cmath> <cmath>\max(c,i)=2</cmath> <cmath>\max(d,g)=2</cmath> <cmath>\max(e,h)=2</cmath> and <math>c=f=0</math> since <math>\text{lcm}(x,y)</math> isn't a multiple of 5. Since <math>\max(d,g)=2</math> we know that <math>a=3</math>. We also know that since <math>\max(b,h)=1</math> that <math>e=2</math>. So now some equations have become useless to us...let's take them out. <cmath>\max(b,h)=1</cmath> <cmath>\max(d,g)=2</cmath> are the only two important ones left. We do casework on each now. If <math>\max(b,h)=1</math> then <math>(b,h)=(1,0),(0,1)</math> or <math>(1,1)</math>. Similarly if <math>\max(d,g)=2</math> then <math>(d,g)=(2,0),(2,1),(2,2),(1,2),(0,2)</math>. Thus our answer is <math>5\times 3=\boxed{15 (A)}</math>. |
==See Also== | ==See Also== |
Revision as of 11:47, 4 February 2016
Problem
How many ordered triples of positive integers satisfy and ?
Solution
We prime factorize and . The prime factorizations are , and , respectively. Let , and . We know that and since isn't a multiple of 5. Since we know that . We also know that since that . So now some equations have become useless to us...let's take them out. are the only two important ones left. We do casework on each now. If then or . Similarly if then . Thus our answer is .
See Also
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2016 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.