Difference between revisions of "1995 AHSME Problems/Problem 17"

Line 21: Line 21:
 
<math> \mathrm{(A) \ 72 } \qquad \mathrm{(B) \ 108 } \qquad \mathrm{(C) \ 120 } \qquad \mathrm{(D) \ 135 } \qquad \mathrm{(E) \ 144 }  </math>
 
<math> \mathrm{(A) \ 72 } \qquad \mathrm{(B) \ 108 } \qquad \mathrm{(C) \ 120 } \qquad \mathrm{(D) \ 135 } \qquad \mathrm{(E) \ 144 }  </math>
  
==Solution==
+
==Solution 1==
 
Define major arc DA as <math>DA</math>, and minor arc DA as <math>da</math>. Extending DC and AB to meet at F, we see that <math>\angle CFB=36=\frac{DA-da}{2}</math>. We now have two equations: <math>DA-da=72</math>, and <math>DA+da=360</math>. Solving, <math>DA=216</math> and <math>da=144\Rightarrow \mathrm{(E)}</math>.
 
Define major arc DA as <math>DA</math>, and minor arc DA as <math>da</math>. Extending DC and AB to meet at F, we see that <math>\angle CFB=36=\frac{DA-da}{2}</math>. We now have two equations: <math>DA-da=72</math>, and <math>DA+da=360</math>. Solving, <math>DA=216</math> and <math>da=144\Rightarrow \mathrm{(E)}</math>.
 +
 +
==Solution 2==
 +
Let <math>O</math> be the center of the circle. Since the sum of the interior angles in any <math>n</math>-gon is <math>(n-2)180^\circ</math>, the sum of the angles in <math>ABCDO</math> is <math>540^\circ</math>.
 +
 +
Since <math>\angle ABC=\angle BCD=108^\circ</math> and <math>\angle OAB=\angleODC=90^\circ</math>, it follows that the measure of <math>\angle AOD</math>, and thus the measure of minor arc <math>AD</math>, equals <math>540^\circ - 108^\circ-108^\circ-90^\circ-90^\circ=\boxed{\mathrm{(E)}144^\circ}</math>.
  
 
==See also==
 
==See also==

Revision as of 03:00, 5 July 2014

Problem

Given regular pentagon $ABCDE$, a circle can be drawn that is tangent to $\overline{DC}$ at $D$ and to $\overline{AB}$ at $A$. The number of degrees in minor arc $AD$ is

[asy]size(100); defaultpen(linewidth(0.7)); draw(rotate(18)*polygon(5)); real x=0.6180339887; draw(Circle((-x,0), 1)); int i; for(i=0; i<5; i=i+1) { dot(origin+1*dir(36+72*i)); }  label("$B$", origin+1*dir(36+72*0), dir(origin--origin+1*dir(36+72*0))); label("$A$", origin+1*dir(36+72*1), dir(origin--origin+1*dir(36+72))); label("$E$", origin+1*dir(36+72*2), dir(origin--origin+1*dir(36+144))); label("$D$", origin+1*dir(36+72*3), dir(origin--origin+1*dir(36+72*3))); label("$C$", origin+1*dir(36+72*4), dir(origin--origin+1*dir(36+72*4))); [/asy]

$\mathrm{(A) \ 72 } \qquad \mathrm{(B) \ 108 } \qquad \mathrm{(C) \ 120 } \qquad \mathrm{(D) \ 135 } \qquad \mathrm{(E) \ 144 }$

Solution 1

Define major arc DA as $DA$, and minor arc DA as $da$. Extending DC and AB to meet at F, we see that $\angle CFB=36=\frac{DA-da}{2}$. We now have two equations: $DA-da=72$, and $DA+da=360$. Solving, $DA=216$ and $da=144\Rightarrow \mathrm{(E)}$.

Solution 2

Let $O$ be the center of the circle. Since the sum of the interior angles in any $n$-gon is $(n-2)180^\circ$, the sum of the angles in $ABCDO$ is $540^\circ$.

Since $\angle ABC=\angle BCD=108^\circ$ and $\angle OAB=\angleODC=90^\circ$ (Error compiling LaTeX. Unknown error_msg), it follows that the measure of $\angle AOD$, and thus the measure of minor arc $AD$, equals $540^\circ - 108^\circ-108^\circ-90^\circ-90^\circ=\boxed{\mathrm{(E)}144^\circ}$.

See also

1995 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png