Difference between revisions of "2025 AIME II Problems/Problem 14"
(→Solution 2) |
|||
(28 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
+ | == Problem == | ||
Let <math>{\triangle ABC}</math> be a right triangle with <math>\angle A = 90^\circ</math> and <math>BC = 38.</math> There exist points <math>K</math> and <math>L</math> inside the triangle such<cmath>AK = AL = BK = CL = KL = 14.</cmath>The area of the quadrilateral <math>BKLC</math> can be expressed as <math>n\sqrt3</math> for some positive integer <math>n.</math> Find <math>n.</math> | Let <math>{\triangle ABC}</math> be a right triangle with <math>\angle A = 90^\circ</math> and <math>BC = 38.</math> There exist points <math>K</math> and <math>L</math> inside the triangle such<cmath>AK = AL = BK = CL = KL = 14.</cmath>The area of the quadrilateral <math>BKLC</math> can be expressed as <math>n\sqrt3</math> for some positive integer <math>n.</math> Find <math>n.</math> | ||
− | ==Solution 1 | + | ==Solution 1== |
+ | From the given condition, we could get <math>\angle{LAK}=60^{\circ}</math> and <math>\triangle{LCA}, \triangle{BAK}</math> are isosceles. Denote <math>\angle{BAK}=\alpha, \angle{CAL}=30^{\circ}-\alpha</math>. From the isosceles condition, we have <math>\angle{BKA}=180^{\circ}-2\alpha, \angle{CLA}=120^{\circ}-2\alpha</math> | ||
− | + | Since <math>\angle{CAB}</math> is right, then <math>AB^2+AC^2=BC^2</math>, we could use law of cosines to express <math>AC^2, AB^2, AC^2+AB^2=2\cdot 14^2(2-\cos \angle{BKA}-\angle {CLA})=2\cdot 14^2(2+\cos(2\alpha)+\cos(60^{\circ}-2\alpha))=38^2</math> | |
− | <math> | + | |
+ | Which simplifies to <math>\cos(2\alpha)+\cos(60^{\circ}-2\alpha)=\frac{165}{98}</math>, expand the expression by angle subtraction formula, we could get <math>\sqrt{3}\sin(2\alpha+60^{\circ})=\frac{165}{98}, \sin(2\alpha+60^{\circ})=\frac{55\sqrt{3}}{98}</math> | ||
+ | |||
+ | Conenct <math>CK</math> we could notice <math>\angle{CLA}=360^{\circ}-\angle{CLA}-\angle{ALK}=180^{\circ}-2\alpha=\angle{AKB}</math>, since <math>CL=LK=AK=KB</math> we have <math>\triangle{CLK}\cong \triangle{AKB}</math>. Moreover, since <math>K</math> lies on the perpendicular bisector of <math>AB</math>, the distance from <math>K</math> to <math>AC</math> is half of the length of <math>AB</math>, which means <math>[ACK]=\frac{[ABC]}{2}</math>, and we could have <math>[ACK]=[ACL]+[ALK]+[ABK]=[ABC]-[BKLC]</math>, so <math>[BKLC]=[AKC]</math>. We have <math>[AKC]=[ALK]+\frac{14^2}{2}(\sin(60-2\alpha)+\sin \alpha)=98(\sin(60+2\alpha))+[ALK]=55\sqrt{3}+\frac{\sqrt{3}}{4}14^2=104\sqrt{3}</math>, so our answer is <math>\boxed{104}</math> | ||
− | ~ | + | ~ Bluesoul |
==Solution 2== | ==Solution 2== | ||
Line 15: | Line 20: | ||
label("A",A,SW); label("B",B,NW); label("C",C,SE); label("A'",D,NE); label("K",K,W); label("L",L,NW); label("L'",G,SE); label("K'",F,E); label("O",O,NNW); | label("A",A,SW); label("B",B,NW); label("C",C,SE); label("A'",D,NE); label("K",K,W); label("L",L,NW); label("L'",G,SE); label("K'",F,E); label("O",O,NNW); | ||
</asy> | </asy> | ||
− | Let <math>O</math> be the midpoint of <math>BC</math>. Take the diagram and rotate it <math>180^{\circ}</math> around <math>O</math> to get the diagram shown. Notice that we have <math>\angle ABC+\angle ACB=90^{\circ}</math>. Because <math>\triangle AKL</math> is equilateral, then <math>\angle KAL=60^{\circ}</math>, so <math>\angle BAK+\angle CAL=30^{\circ}</math>. Because of isosceles triangles <math>\triangle BAK</math> and <math>\triangle CAL</math>, we get that <math>\angle ABK+\angle ACL=30^{\circ}</math> too, implying that <math>\angle KBC+\angle LCB=60^{\circ}</math>. But by our rotation, we have <math>\angle LCO=\angle L'BO</math>, so this implies that <math>\angle KBL'=60^{\circ}</math>, or that <math>\triangle KBL'</math> is equilateral. We can similarly derive that <math>\angle KBO=\angle K'CO</math> implies <math>\angle LCK'=60^{\circ}</math> so that <math>\triangle LK' | + | Let <math>O</math> be the midpoint of <math>BC</math>. Take the diagram and rotate it <math>180^{\circ}</math> around <math>O</math> to get the diagram shown. Notice that we have <math>\angle ABC+\angle ACB=90^{\circ}</math>. Because <math>\triangle AKL</math> is equilateral, then <math>\angle KAL=60^{\circ}</math>, so <math>\angle BAK+\angle CAL=30^{\circ}</math>. Because of isosceles triangles <math>\triangle BAK</math> and <math>\triangle CAL</math>, we get that <math>\angle ABK+\angle ACL=30^{\circ}</math> too, implying that <math>\angle KBC+\angle LCB=60^{\circ}</math>. But by our rotation, we have <math>\angle LCO=\angle L'BO</math>, so this implies that <math>\angle KBL'=60^{\circ}</math>, or that <math>\triangle KBL'</math> is equilateral. We can similarly derive that <math>\angle KBO=\angle K'CO</math> implies <math>\angle LCK'=60^{\circ}</math> so that <math>\triangle LK'C</math> is also equilateral. At this point, notice that quadrilateral <math>KL'K'L</math> is a rhombus. The area of our desired region is now <math>[BKLC]=\frac{1}{2}[BL'K'CLK]</math>. We can easily find the areas of <math>\triangle KBL'</math> and <math>\triangle LK'C</math> to be <math>\frac{\sqrt{3}}{4}\cdot 14^2=49\sqrt{3}</math>. Now it remains to find the area of rhombus <math>KL'K'L</math>. |
<asy> | <asy> | ||
import math; import geometry; import olympiad; | import math; import geometry; import olympiad; | ||
Line 22: | Line 27: | ||
label("A",A,W); label("K",K,N); label("O",O,E); label("L",L,S); label("M",M,SE); | label("A",A,W); label("K",K,N); label("O",O,E); label("L",L,S); label("M",M,SE); | ||
</asy> | </asy> | ||
− | Focus on the quadrilateral <math>AKOL</math>. Restate the configuration in another way - we have equilateral triangle <math>\triangle AKL</math> with side length 14, and a point <math>O</math> such that <math>AO=19</math> and <math>\angle KOL=90^{\circ}</math>. We are trying to find the area of <math>\triangle KOL</math>. Let <math>M</math> be the midpoint of <math>KL</math>. We see that <math>AM=7\sqrt{3}</math>, and since <math>M</math> is the circumcenter of <math>\triangle KOL</math>, it follows that <math>MO=7</math>. Let <math>\angle KMO=\theta</math>. From the Law of Cosines in <math>\triangle AMO</math>, we can see that <cmath>(7\sqrt{3})^2+7^2-2(7\sqrt{3})(7)\cos (\angle AMO)=361,</cmath> so after simplification we get that <math>\cos (\theta +90)=-\frac{55\sqrt{3}}{98}</math>. Then by trigonometric identities this simplifies to <math>\sin \theta =\frac{55\sqrt{3}}{98}</math>. Applying the definition <math>\cos^2\theta +\sin^2\theta =1</math> gives us that <math>\cos \theta =\frac{23}{98}</math>. Applying the Law of Cosines again in <math>\triangle KMO</math>, we get that <cmath>49+49-2\cdot 7\cdot 7\cdot \cos \theta =98-98\cdot \frac{23}{98}=98-23 | + | Focus on the quadrilateral <math>AKOL</math>. Restate the configuration in another way - we have equilateral triangle <math>\triangle AKL</math> with side length 14, and a point <math>O</math> such that <math>AO=19</math> and <math>\angle KOL=90^{\circ}</math>. We are trying to find the area of <math>\triangle KOL</math>. Let <math>M</math> be the midpoint of <math>KL</math>. We see that <math>AM=7\sqrt{3}</math>, and since <math>M</math> is the circumcenter of <math>\triangle KOL</math>, it follows that <math>MO=7</math>. Let <math>\angle KMO=\theta</math>. From the Law of Cosines in <math>\triangle AMO</math>, we can see that <cmath>(7\sqrt{3})^2+7^2-2(7\sqrt{3})(7)\cos (\angle AMO)=361,</cmath> so after simplification we get that <math>\cos (\theta +90)=-\frac{55\sqrt{3}}{98}</math>. Then by trigonometric identities this simplifies to <math>\sin \theta =\frac{55\sqrt{3}}{98}</math>. Applying the definition <math>\cos^2\theta +\sin^2\theta =1</math> gives us that <math>\cos \theta =\frac{23}{98}</math>. Applying the Law of Cosines again in <math>\triangle KMO</math>, we get that <cmath>49+49-2\cdot 7\cdot 7\cdot \cos \theta =98-98\cdot \frac{23}{98}=98-23=75=KO^2,</cmath> which tells us that <math>KO=5\sqrt{3}</math>. The Pythagorean Theorem in <math>\triangle KOL</math> gives that <math>OL=11</math>, so the area of <math>\triangle KOL</math> is <math>\frac{55\sqrt{3}}{2}</math>. The rhombus <math>KL'K'L</math> consists of four of these triangles, so its area is <math>4\cdot \frac{55\sqrt{3}}{2}=110\sqrt{3}</math>. |
Finally, the area of hexagon <math>BL'K'CLK</math> is <math>49\sqrt{3}+110\sqrt{3}+49\sqrt{3}=208\sqrt{3}</math>, and since this consists of quadrilaterals <math>BKLC</math> and <math>CK'L'B</math> which must be congruent by that rotation, the area of <math>BKLC</math> is <math>104\sqrt{3}</math>. Therefore the answer is <math>\boxed{104}</math>. | Finally, the area of hexagon <math>BL'K'CLK</math> is <math>49\sqrt{3}+110\sqrt{3}+49\sqrt{3}=208\sqrt{3}</math>, and since this consists of quadrilaterals <math>BKLC</math> and <math>CK'L'B</math> which must be congruent by that rotation, the area of <math>BKLC</math> is <math>104\sqrt{3}</math>. Therefore the answer is <math>\boxed{104}</math>. | ||
− | ~ethanzhang1001 | + | ~ethanzhang1001 |
+ | |||
+ | ==Solution 3 (coordinates and bashy algebra)== | ||
+ | |||
+ | By drawing our the triangle, I set A to be (0, 0) in the coordinate plane. I set C to be (x, 0) and B to be (0, y). I set K to be (a, b) and L to be (c, d). Then, since all of these distances are 14, I used coordinate geometry to set up the following equations: | ||
+ | <math>a^{2}</math> + <math>b^{2}</math> = 196; <math>a^{2}</math> + <math>(b - y)^{2}</math> = 196; <math>(a - c)^{2}</math> + <math>(b - d)^{2}</math> = 196; <math>c^{2}</math> + <math>d^{2}</math> = 196; <math>(c - x)^{2}</math> + <math>d^{2}</math>. = 196. Notice by merging the first two equations, the only possible way for it to work is if <math>b - y</math> = <math>-b</math> which means <math>y = 2b</math>. Next, since the triangle is right, and we know one leg is <math>2b</math> as <math>y = 2b</math>, the other leg, x, is <math>\sqrt{38^{2} - (2b)^{2}}</math>.Then, plugging these in, we get a system of equations with 4 variables and 4 equations and solving, we get a = 2, b = 8<math>\sqrt{3}</math>, c = 13, d = 3<math>\sqrt{3}</math>. Now plugging in all the points and using the Pythagorean Theorem, we get the coordinates of the quadrilateral. By Shoelace, our area is 104<math>\sqrt{3}</math>. Thus, the answer is <math>\boxed{104}</math>. | ||
+ | |||
+ | ~ilikemath247365 | ||
+ | |||
+ | ==Solution 4 (Trigonometry)== | ||
+ | <asy> | ||
+ | import math; import geometry; import olympiad; | ||
+ | point A,B,C,L,K; A=(0,0); C=(16sqrt(3),0); B=(0,26); L=(8sqrt(3),2); K=(3sqrt(3),13); | ||
+ | draw(A--B--C--cycle); draw(A--K--L--cycle); draw(B--K); draw(C--L); draw(B--L); | ||
+ | label("A",A,SW); label("B",B,NW); label("C",C,SE); label("K",K,W); label("L",L,NE); | ||
+ | markscalefactor=1; | ||
+ | draw(anglemark(L,C,A)); | ||
+ | draw(anglemark(A,B,K)); | ||
+ | </asy> | ||
+ | Immediately we should see that <math>\triangle{AKL}</math> is equilateral, so <math>\angle{KAL}=60</math>. | ||
+ | |||
+ | We assume <math>\angle{LCA}=x</math>, and it is easily derived that <math>\angle{KBA}=30-x</math>. Using trigonometry, we can say that <math>AC=28\cos{x}</math> and <math>AB=28\cos{(30-x)}</math>. Pythagoras tells us that <math>BC^2=AC^2+AB^2</math> so now we evaluate as follows: | ||
+ | \begin{align*} | ||
+ | 38^2 &=28^2(\cos^2{x}+\cos^2{(30-x)}) \\ | ||
+ | (\frac{19}{14})^2 &=\cos^2{x}+(\frac{\sqrt{3}}{2} \cos{x} - \frac{1}{2} \sin{x})^2 \\ | ||
+ | &=\cos^2{x}+\frac{3}{4} \cos^2{x}-\frac{\sqrt{3}}{2}\sin{x} \cos{x}+\frac{1}{4}\sin^2{x} \\ | ||
+ | &=\frac{3}{2} \cos^2{x}-\frac{\sqrt{3}}{2}\sin{x} \cos{x}+\frac{1}{4} \\ | ||
+ | &=\frac{3}{4}(2\cos^2{x}-1)-\frac{\sqrt{3}}{4} (2\sin{x} \cos{x})+1 \\ | ||
+ | (\frac{33}{14})(\frac{5}{14})&=\frac{\sqrt{3}}{2}(\frac{\sqrt{3}}{2}(\cos{2x})-\frac{1}{2} (\sin{2x})) \\ | ||
+ | \frac{55\sqrt{3}}{98}&=\cos{(30-2x)} \\ | ||
+ | \end{align*} | ||
+ | |||
+ | It is obvious that <math>\angle{ALC}=180-2x</math>. We can easily derive <math>\cos{(150+(30-2x))}</math> using angle addition we know, and then using cosine rule to find side <math>AC</math>. | ||
+ | |||
+ | \begin{align*} | ||
+ | \frac{55\sqrt{3}}{98}=\cos{(30-2x)} \\ | ||
+ | \sin{(30-2x)}=\sqrt{1-\cos^2{(30-2x)}}=\frac{23}{98} \\ | ||
+ | \cos{(180-2x)}=(-\frac{\sqrt{3}}{2})(\frac{55\sqrt{3}}{98})-(\frac{1}{2})(\frac{23}{98}) \\ | ||
+ | \cos{(180-2x)}=-\frac{47}{49} \\ | ||
+ | AC^2=14^2+14^2+2\cdot 14\cdot 14\cdot (\frac{47}{49}) \\ | ||
+ | AC=\sqrt{768}=16\sqrt3 \\ | ||
+ | \end{align*} | ||
+ | |||
+ | We easily find <math>\cos{x}=\frac{4\sqrt{3}}{7}</math> and <math>\sin{x}=\frac{1}{7}</math> (draw a perpendicular down from <math>L</math> to <math>AC</math>). What we are trying to find is the area of <math>BKLC</math>, which can be found by adding the areas of <math>\triangle{BKL}</math> and <math>\triangle{BLC}</math>. It is trivial that <math>\triangle{BKL}</math> and <math>\triangle{ACL}</math> are congruent, so we know that <math>BL=28\cos{x}</math>. What we require is | ||
+ | |||
+ | \begin{align*} | ||
+ | \frac{1}{2}(14)(14)(\sin{(180-2x)})+\frac{1}{2}(14)(28\cos{x})(\sin{(120+x)}) \\ | ||
+ | \end{align*} | ||
+ | |||
+ | We do similar calculations to obtain that <math>\sin{(120+x)}=\frac{11}{14}</math> and <math>\cos{(180-2x)}=-\frac{47}{49}</math> implies <math>\sin{(180-2x)}=\frac{8\sqrt{3}}{49}</math>, so now we plug in everything we know to calculate the area of the quadrilateral: | ||
+ | |||
+ | \begin{align*} | ||
+ | & \frac{1}{2}(14)(14)(\sin{(180-2x)})+\frac{1}{2}(14)(28\cos{x})(\sin{(120+x)}) \\ | ||
+ | &=\frac{1}{2}(14)(14)(\frac{8\sqrt{3}}{49})+\frac{1}{2}(14)(16\sqrt{3})(\frac{11}{14}) \\ | ||
+ | &=16\sqrt{3}+88\sqrt{3} \\ | ||
+ | &=104\sqrt{3} \\ | ||
+ | \end{align*} | ||
+ | |||
+ | We see that <math>n=\boxed{104}</math>. | ||
+ | |||
+ | ~ [[User:lisztepos|lisztepos]] | ||
+ | |||
+ | ~ Edited by [[User:Aoum|Aoum]] | ||
+ | |||
+ | ==Solution 5 (Circles and Trigonometry)== | ||
+ | [[File:AIME2025II_P14_Solution5.PNG|450px]] | ||
+ | |||
+ | Since <math>KB=KL=KA=14</math> and <math>LK=LA=LC=14</math>, we can construct 2 circles of radus 14 with <math>K</math> and <math>L</math> as the center of the two circles. Let the intersection of the 2 circles other than <math>A</math> be point <math>M</math>. Connect <math>BM</math>, <math>CM</math>, <math>KM</math>, and <math>LM</math>. Connect <math>AM</math>, which is the radical axis of the 2 circles. | ||
+ | |||
+ | From the figure, we know that | ||
+ | <cmath>[KLCB] = [KLCMB] - [BMC]</cmath> | ||
+ | <cmath>[KLCB] = [BKM] + [CLM] + [KLM] - [BMC]</cmath> | ||
+ | |||
+ | Let <math>\angle{BAM} = \theta</math>, which means that <math>\angle{CAM} = \frac{\pi}{2} - \theta</math>. For easier calculation, we temporarily define the radius of the 2 circles (which is 14) to be <math>R</math>. <math>\angle{BAM}</math> is an inscribed angle and <math>\angle{BKM}</math> is a central angle, so <math>\angle{BKM} = 2\angle{BAM} = 2\theta</math>. Similar with the other side, <math>\angle{CLM} = \pi-2\theta</math>. <math>KM = KL = LM = R</math>, so <math>\triangle{BKM}</math> is an equilateral triangle. | ||
+ | |||
+ | Using the Law of Cosines, we get the area of each little triangle. | ||
+ | <cmath>[BKM] = \frac{1}{2}\cdot R^2\cdot\sin(2\theta)</cmath> | ||
+ | <cmath>[CLM] = \frac{1}{2}\cdot R^2\cdot\sin(\pi-2\theta) = \frac{1}{2}\cdot R^2\cdot\sin(2\theta)</cmath> | ||
+ | <cmath>[KLM] = \frac{1}{2}\cdot\sin({\frac{\pi}{3}})=\frac{\sqrt3}{4}R^2</cmath> | ||
+ | \begin{align*} | ||
+ | [BMC] & = \frac{1}{2}\cdot|BM|\cdot|MC|\cdot\sin({\frac{5\pi}{6}})\\ | ||
+ | &= \frac{1}{2}\cdot\frac{1}{2}\cdot2R\sin(\theta)\cdot2R\sin(\frac{\pi}{2}-\theta)\\ | ||
+ | &= R^2\cdot\sin(\theta)\cos(\theta)\\ | ||
+ | &= \frac{1}{2}\cdot R^2\sin(2\theta)\\ | ||
+ | \end{align*} | ||
+ | |||
+ | We can conclude that | ||
+ | <cmath>[KLCB] = \frac{1}{2}\cdot R^2\cdot\sin(2\theta)+\frac{1}{2}\cdot R^2\cdot\sin(2\theta)+\frac{\sqrt3}{4}R^2-\frac{1}{2}\cdot R^2\sin(2\theta)</cmath> | ||
+ | <cmath>[KLCB] = {14}^2\cdot(\frac{\sin(2\theta)}{2}+\frac{\sqrt3}{4})</cmath> | ||
+ | |||
+ | Now, we just needed to find the value of <math>\sin(2\theta)</math>. We analyze the <math>\triangle{BMC}</math>. We already know that <math>\angle{BMC} = {150}^{\circ}</math> and <math>BM = 2R\sin(\theta)</math> and <math>BM = 2R\cos(\theta)</math>. Using the Laws of Cosines (again!) and the given condition of <math>BC = 38</math>, we can create a formula on <math>\theta</math>. | ||
+ | |||
+ | <cmath>{BC}^2 = {BM}^2+{CM}^2-2\cdot BM\cdot MC\cdot\cos(\angle{BMC})</cmath> | ||
+ | <cmath>{BC}^2 = (2R\sin(\theta))^2+(2R\cos(\theta))^2-2\cdot\cos({150}^{\circ})\cdot(2R\cos(\theta))\cdot(2R\cos(\theta)) = {38}^2</cmath> | ||
+ | <cmath>4R^2(\sin^2(\theta)+\cos^2(\theta)+\sqrt3\sin(\theta)\cos(\theta)) = {38}^2</cmath> | ||
+ | <cmath>4R^2(1+\frac{\sqrt3}{2}\cdot\sin(2\theta)) = {38}^2</cmath> | ||
+ | <cmath>4R^2+\frac{4R^2\sqrt3}{2}\cdot\sin(2\theta)) = {38}^2</cmath> | ||
+ | <cmath>\sin(2\theta) = \frac{2}{\sqrt3}\cdot(\frac{{38}^2}{4\cdot{38}^2}-1)</cmath> | ||
+ | <cmath>\sin(2\theta) = \frac{2\cdot165}{\sqrt3\cdot{14}^2} = \frac{165}{98\sqrt3}</cmath> | ||
+ | |||
+ | We put the calculated value of <math>\sin(2\theta)</math> back into <math>[KLCB]</math>: | ||
+ | <cmath>[KLCB] = {14}^2\cdot(\frac{165}{2\cdot98\sqrt3}+\frac{\sqrt3}{4})</cmath> | ||
+ | <cmath>[KLCB] = 55\sqrt3+49\sqrt3 = 104\sqrt3</cmath> | ||
+ | |||
+ | Therefore,<math>n=\boxed{104}</math>. | ||
+ | |||
+ | ~cassphe | ||
+ | |||
+ | ==Solution 6 (Trig Identities; warning: bashy)== | ||
+ | |||
+ | Consider a diagram to the original problem (credit to solution 4): | ||
+ | |||
+ | <asy> | ||
+ | import math; import geometry; import olympiad; | ||
+ | point A,B,C,L,K; A=(0,0); C=(16sqrt(3),0); B=(0,26); L=(8sqrt(3),2); K=(3sqrt(3),13); | ||
+ | draw(A--B--C--cycle); draw(A--K--L--cycle); draw(B--K); draw(C--L); draw(B--L); | ||
+ | label("A",A,SW); label("B",B,NW); label("C",C,SE); label("K",K,W); label("L",L,NE); | ||
+ | markscalefactor=1; | ||
+ | </asy> | ||
+ | |||
+ | Now, let us simplify the problem further. We know that <math>K</math> and <math>L</math> must lie on the perpendicular bisectors of <math>AB</math> and <math>AC</math>, respectively. The real problem here is the equilateral triangle in the middle, inscribed in a rectangle with diagonal length 18. | ||
+ | |||
+ | We create a further simplified problem: given that the inscribed equilateral triangle of a certain rectangle with diagonal length <math>19</math> has side length <math>14</math>, find the sides and intersection points on this rectangle. For reference, here is a diagram: | ||
+ | |||
+ | <asy> | ||
+ | import math; import geometry; import olympiad; | ||
+ | point A,B,C,D,L,K; A=(0,0); D=(13,0); B=(0,8sqrt(3)); C=(13,8sqrt(3)); L=(13,3sqrt(3)); K=(2,8sqrt(3)); | ||
+ | draw(A--B--C--D--cycle); draw(A--K--L--cycle); | ||
+ | label("A",A,SW); label("B",B,NW); label("C",C,NE); label("K",K,N); label("L",L,E); label("D",D,SE); | ||
+ | markscalefactor=1; | ||
+ | </asy> | ||
+ | |||
+ | |||
+ | |||
+ | Note the angles <math>\angle{LAD}</math> and <math>\angle{BAK}</math>. Since <math>\angle{LAD} + \angle{BAK} + 60^{\circ} = 90^{\circ}</math>, <math>\angle{LAD} + \angle{BAK} = 30^{\circ}</math>, and <math>\angle{BAK} = 30^{\circ} - \angle{LAD}</math>. Thus, let <math>\angle{LAD} = \alpha</math> and <math>\angle{BAK} = 30 - \alpha</math>. | ||
+ | |||
+ | Now, we know that <math>AB^2 + AD^2 = 19^2</math>, as the hypotenuse of the larger right triangle is <math>38</math>. However, we can also express AB and AB in terms of <math>\alpha</math>: <math>AB = 14(\cos(30^{\circ}-\alpha))</math> and <math>AD = 14(\cos(\alpha))</math>. Thus, <math>\cos^2(\alpha) + \cos^2(30^{\circ}-\alpha) = 361/196</math>. We expand this using the cosine difference identity: | ||
+ | |||
+ | <math>\cos^2(\alpha) + (\cos(30^{\circ})\cos(\alpha) + \sin(30^{\circ})\sin(\alpha))^2 = \frac{361}{196}</math> | ||
+ | |||
+ | <math>\frac{7}{4}\cos^2(\alpha) + \frac{1}{4}\sin^2(\alpha) + \frac{\sqrt3}{2}\sin(\alpha)\cos(\alpha) = \frac{361}{196}</math> | ||
+ | |||
+ | Using the fact that <math>\sin^2(\alpha) + \cos^2(\alpha) = 1</math>, then multiplying the entire equation by <math>2</math>, | ||
+ | |||
+ | <math>3\cos^2(\alpha) + \sqrt3\sin(\alpha)\cos(\alpha) = \frac{156}{49}</math> | ||
+ | |||
+ | Now, to save some writing, let us denote <math>\sin(\alpha)</math> with <math>x</math>, and <math>\cos(\alpha)</math> with <math>y</math>. | ||
+ | |||
+ | We have the following equations: | ||
+ | |||
+ | <math>x^2 + y^2 = 1</math> | ||
+ | |||
+ | <math>3y^2 + \sqrt3xy = \frac{156}{49}</math> | ||
+ | |||
+ | Substituting <math>x</math> for <math>y</math>, moving <math>3y^2</math> to the left side, squaring, and dividing by 9, we end up with the quartic: | ||
+ | |||
+ | <math>\frac{4}{3}y^4 - \frac{361}{147}y^2 + \frac{52^2}{49^2} = 0</math> | ||
+ | |||
+ | Using the quadratic formula, we end up with this: | ||
+ | |||
+ | <math>y^2 = \frac{\frac{361}{49} \pm \frac{1}{49}\cdot\sqrt{361^2 - 208^2\cdot3}}{8}</math> | ||
+ | |||
+ | Now, we could just compute <math>361^2 - 208^2\cdot3</math>, but instead, we can do this: | ||
+ | |||
+ | <math>361^2 - 208^2\cdot3 = (129600 + 720 + 1) - (40000 + 3200 + 64)\cdot3</math> | ||
+ | |||
+ | <math>(129600 + 721) - (43200 + 64)\cdot3</math> | ||
+ | |||
+ | <math>(129600 + 721) - (129600 + 192) = 529 = 23^2</math> | ||
+ | |||
+ | Thus, we have two cases: | ||
+ | |||
+ | <math>1. \cos(\alpha) = \frac{13}{14}</math> | ||
+ | |||
+ | <math>2. \cos(\alpha) = \frac{4\sqrt3}{7}</math> | ||
+ | |||
+ | Both lead to the same side lengths of the rectangle: <math>8\sqrt3</math>, and <math>13</math>. Referring back to our original rectangle diagram and plugging in our trigonometric values, we get that <math>CK = 13 - 2 = 11</math>, and <math>CL = 8\sqrt3 - 3\sqrt3 = 5\sqrt3</math>. Thus, the area of the original quadrilateral is <math>\frac{88\sqrt3 + 55\sqrt3 + 65\sqrt3}{2}</math>, or <math>\boxed{104}\sqrt3</math>. | ||
+ | |||
+ | ~Stead | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==Remarks== | ||
+ | This problem can be approached either by analytic geometry or by trigonometric manipulation. The characteristics of this problem make it highly similar to 2017 AIME I Problem 15 ([[2017_AIME_I_Problems/Problem_15|Link]]). | ||
+ | |||
+ | ~[[User:Bloggish|Bloggish]] | ||
== See also == | == See also == |
Latest revision as of 08:57, 18 February 2025
Contents
Problem
Let be a right triangle with
and
There exist points
and
inside the triangle such
The area of the quadrilateral
can be expressed as
for some positive integer
Find
Solution 1
From the given condition, we could get and
are isosceles. Denote
. From the isosceles condition, we have
Since is right, then
, we could use law of cosines to express
Which simplifies to , expand the expression by angle subtraction formula, we could get
Conenct we could notice
, since
we have
. Moreover, since
lies on the perpendicular bisector of
, the distance from
to
is half of the length of
, which means
, and we could have
, so
. We have
, so our answer is
~ Bluesoul
Solution 2
Let
be the midpoint of
. Take the diagram and rotate it
around
to get the diagram shown. Notice that we have
. Because
is equilateral, then
, so
. Because of isosceles triangles
and
, we get that
too, implying that
. But by our rotation, we have
, so this implies that
, or that
is equilateral. We can similarly derive that
implies
so that
is also equilateral. At this point, notice that quadrilateral
is a rhombus. The area of our desired region is now
. We can easily find the areas of
and
to be
. Now it remains to find the area of rhombus
.
Focus on the quadrilateral
. Restate the configuration in another way - we have equilateral triangle
with side length 14, and a point
such that
and
. We are trying to find the area of
. Let
be the midpoint of
. We see that
, and since
is the circumcenter of
, it follows that
. Let
. From the Law of Cosines in
, we can see that
so after simplification we get that
. Then by trigonometric identities this simplifies to
. Applying the definition
gives us that
. Applying the Law of Cosines again in
, we get that
which tells us that
. The Pythagorean Theorem in
gives that
, so the area of
is
. The rhombus
consists of four of these triangles, so its area is
.
Finally, the area of hexagon is
, and since this consists of quadrilaterals
and
which must be congruent by that rotation, the area of
is
. Therefore the answer is
.
~ethanzhang1001
Solution 3 (coordinates and bashy algebra)
By drawing our the triangle, I set A to be (0, 0) in the coordinate plane. I set C to be (x, 0) and B to be (0, y). I set K to be (a, b) and L to be (c, d). Then, since all of these distances are 14, I used coordinate geometry to set up the following equations:
+
= 196;
+
= 196;
+
= 196;
+
= 196;
+
. = 196. Notice by merging the first two equations, the only possible way for it to work is if
=
which means
. Next, since the triangle is right, and we know one leg is
as
, the other leg, x, is
.Then, plugging these in, we get a system of equations with 4 variables and 4 equations and solving, we get a = 2, b = 8
, c = 13, d = 3
. Now plugging in all the points and using the Pythagorean Theorem, we get the coordinates of the quadrilateral. By Shoelace, our area is 104
. Thus, the answer is
.
~ilikemath247365
Solution 4 (Trigonometry)
Immediately we should see that
is equilateral, so
.
We assume , and it is easily derived that
. Using trigonometry, we can say that
and
. Pythagoras tells us that
so now we evaluate as follows:
\begin{align*}
38^2 &=28^2(\cos^2{x}+\cos^2{(30-x)}) \\
(\frac{19}{14})^2 &=\cos^2{x}+(\frac{\sqrt{3}}{2} \cos{x} - \frac{1}{2} \sin{x})^2 \\
&=\cos^2{x}+\frac{3}{4} \cos^2{x}-\frac{\sqrt{3}}{2}\sin{x} \cos{x}+\frac{1}{4}\sin^2{x} \\
&=\frac{3}{2} \cos^2{x}-\frac{\sqrt{3}}{2}\sin{x} \cos{x}+\frac{1}{4} \\
&=\frac{3}{4}(2\cos^2{x}-1)-\frac{\sqrt{3}}{4} (2\sin{x} \cos{x})+1 \\
(\frac{33}{14})(\frac{5}{14})&=\frac{\sqrt{3}}{2}(\frac{\sqrt{3}}{2}(\cos{2x})-\frac{1}{2} (\sin{2x})) \\
\frac{55\sqrt{3}}{98}&=\cos{(30-2x)} \\
\end{align*}
It is obvious that . We can easily derive
using angle addition we know, and then using cosine rule to find side
.
\begin{align*} \frac{55\sqrt{3}}{98}=\cos{(30-2x)} \\ \sin{(30-2x)}=\sqrt{1-\cos^2{(30-2x)}}=\frac{23}{98} \\ \cos{(180-2x)}=(-\frac{\sqrt{3}}{2})(\frac{55\sqrt{3}}{98})-(\frac{1}{2})(\frac{23}{98}) \\ \cos{(180-2x)}=-\frac{47}{49} \\ AC^2=14^2+14^2+2\cdot 14\cdot 14\cdot (\frac{47}{49}) \\ AC=\sqrt{768}=16\sqrt3 \\ \end{align*}
We easily find and
(draw a perpendicular down from
to
). What we are trying to find is the area of
, which can be found by adding the areas of
and
. It is trivial that
and
are congruent, so we know that
. What we require is
\begin{align*} \frac{1}{2}(14)(14)(\sin{(180-2x)})+\frac{1}{2}(14)(28\cos{x})(\sin{(120+x)}) \\ \end{align*}
We do similar calculations to obtain that and
implies
, so now we plug in everything we know to calculate the area of the quadrilateral:
\begin{align*} & \frac{1}{2}(14)(14)(\sin{(180-2x)})+\frac{1}{2}(14)(28\cos{x})(\sin{(120+x)}) \\ &=\frac{1}{2}(14)(14)(\frac{8\sqrt{3}}{49})+\frac{1}{2}(14)(16\sqrt{3})(\frac{11}{14}) \\ &=16\sqrt{3}+88\sqrt{3} \\ &=104\sqrt{3} \\ \end{align*}
We see that .
~ Edited by Aoum
Solution 5 (Circles and Trigonometry)
Since and
, we can construct 2 circles of radus 14 with
and
as the center of the two circles. Let the intersection of the 2 circles other than
be point
. Connect
,
,
, and
. Connect
, which is the radical axis of the 2 circles.
From the figure, we know that
Let , which means that
. For easier calculation, we temporarily define the radius of the 2 circles (which is 14) to be
.
is an inscribed angle and
is a central angle, so
. Similar with the other side,
.
, so
is an equilateral triangle.
Using the Law of Cosines, we get the area of each little triangle.
\begin{align*}
[BMC] & = \frac{1}{2}\cdot|BM|\cdot|MC|\cdot\sin({\frac{5\pi}{6}})\\
&= \frac{1}{2}\cdot\frac{1}{2}\cdot2R\sin(\theta)\cdot2R\sin(\frac{\pi}{2}-\theta)\\
&= R^2\cdot\sin(\theta)\cos(\theta)\\
&= \frac{1}{2}\cdot R^2\sin(2\theta)\\
\end{align*}
We can conclude that
Now, we just needed to find the value of . We analyze the
. We already know that
and
and
. Using the Laws of Cosines (again!) and the given condition of
, we can create a formula on
.
We put the calculated value of back into
:
Therefore,.
~cassphe
Solution 6 (Trig Identities; warning: bashy)
Consider a diagram to the original problem (credit to solution 4):
Now, let us simplify the problem further. We know that and
must lie on the perpendicular bisectors of
and
, respectively. The real problem here is the equilateral triangle in the middle, inscribed in a rectangle with diagonal length 18.
We create a further simplified problem: given that the inscribed equilateral triangle of a certain rectangle with diagonal length has side length
, find the sides and intersection points on this rectangle. For reference, here is a diagram:
Note the angles and
. Since
,
, and
. Thus, let
and
.
Now, we know that , as the hypotenuse of the larger right triangle is
. However, we can also express AB and AB in terms of
:
and
. Thus,
. We expand this using the cosine difference identity:
Using the fact that , then multiplying the entire equation by
,
Now, to save some writing, let us denote with
, and
with
.
We have the following equations:
Substituting for
, moving
to the left side, squaring, and dividing by 9, we end up with the quartic:
Using the quadratic formula, we end up with this:
Now, we could just compute , but instead, we can do this:
Thus, we have two cases:
Both lead to the same side lengths of the rectangle: , and
. Referring back to our original rectangle diagram and plugging in our trigonometric values, we get that
, and
. Thus, the area of the original quadrilateral is
, or
.
~Stead
Remarks
This problem can be approached either by analytic geometry or by trigonometric manipulation. The characteristics of this problem make it highly similar to 2017 AIME I Problem 15 (Link).
See also
2025 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.