Difference between revisions of "2025 AIME II Problems/Problem 14"
m (→Solution 4 (Trigonometry)) |
|||
Line 92: | Line 92: | ||
-lisztepos | -lisztepos | ||
+ | |||
+ | ==Remarks== | ||
+ | This problem can be approached either by analytic geometry or by trigonometric manipulation. The characteristics of this problem make it highly similar to 2017 AIME I Problem 15 ([[2017_AIME_I_Problems/Problem_15|Link]]). | ||
== See also == | == See also == |
Revision as of 03:01, 14 February 2025
Let be a right triangle with
and
There exist points
and
inside the triangle such
The area of the quadrilateral
can be expressed as
for some positive integer
Find
Contents
Solution 1(Coordinates and Bashy Algebra)
By drawing our the triangle, I set A to be (0, 0) in the coordinate plane. I set C to be (x, 0) and B to be (0, y). I set K to be (a, b) and L to be (c, d). Then, since all of these distances are 14, I used coordinate geometry to set up the following equations:
+
= 196;
+
= 196;
+
= 196;
+
= 196;
+
. = 196. Notice by merging the first two equations, the only possible way for it to work is if
=
which means
. Next, since the triangle is right, and we know one leg is
as
, the other leg, x, is
.Then, plugging these in, we get a system of equations with 4 variables and 4 equations and solving, we get a = 2, b = 8
, c = 13, d = 3
. Now plugging in all the points and using the Pythagorean Theorem, we get the coordinates of the quadrilateral. By Shoelace, our area is 104
. Thus, the answer is
.
~ilikemath247365
Solution 2
Let
be the midpoint of
. Take the diagram and rotate it
around
to get the diagram shown. Notice that we have
. Because
is equilateral, then
, so
. Because of isosceles triangles
and
, we get that
too, implying that
. But by our rotation, we have
, so this implies that
, or that
is equilateral. We can similarly derive that
implies
so that
is also equilateral. At this point, notice that quadrilateral
is a rhombus. The area of our desired region is now
. We can easily find the areas of
and
to be
. Now it remains to find the area of rhombus
.
Focus on the quadrilateral
. Restate the configuration in another way - we have equilateral triangle
with side length 14, and a point
such that
and
. We are trying to find the area of
. Let
be the midpoint of
. We see that
, and since
is the circumcenter of
, it follows that
. Let
. From the Law of Cosines in
, we can see that
so after simplification we get that
. Then by trigonometric identities this simplifies to
. Applying the definition
gives us that
. Applying the Law of Cosines again in
, we get that
which tells us that
. The Pythagorean Theorem in
gives that
, so the area of
is
. The rhombus
consists of four of these triangles, so its area is
.
Finally, the area of hexagon is
, and since this consists of quadrilaterals
and
which must be congruent by that rotation, the area of
is
. Therefore the answer is
.
~ethanzhang1001
Solution 3
From the given condition, we could get and
are isosceles. Denote
. From the isosceles condition, we have
Since is right, then
, we could use law of cosines to express
Which simplifies to , expand the expression by angle subtraction formula, we could get
Conenct we could notice
, since
we have
. Moreover, since
lies on the perpendicular bisector of
, the distance from
to
is half of the length of
, which means
, and we could have
, so
. We have
, so our answer is
~Bluesoul
Solution 4 (Trigonometry)
Immediately we should see that
is equilateral, so
.
We assume , and it is easily derived that
. Using trigonometry, we can say that
and
. Pythagoras tells us that
so now we evaluate as follows:
\begin{align*}
38^2 &=28^2(\cos^2{x}+\cos^2{(30-x)}) \\
(\frac{19}{14})^2 &=\cos^2{x}+(\frac{\sqrt{3}}{2} \cos{x} - \frac{1}{2} \sin{x})^2 \\
&=\cos^2{x}+\frac{3}{4} \cos^2{x}-\frac{\sqrt{3}}{2}\sin{x} \cos{x}+\frac{1}{4}\sin^2{x} \\
&=\frac{3}{2} \cos^2{x}-\frac{\sqrt{3}}{2}\sin{x} \cos{x}+\frac{1}{4} \\
&=\frac{3}{4}(2\cos^2{x}-1)-\frac{\sqrt{3}}{4} (2\sin{x} \cos{x})+1 \\
(\frac{33}{14})(\frac{5}{14})&=\frac{\sqrt{3}}{2}(\frac{\sqrt{3}}{2}(\cos{2x})-\frac{1}{2} (\sin{2x})) \\
\frac{55\sqrt{3}}{98}&=\cos{(30-2x)} \\
\end{align*}
It is obvious that . We can easily derive
using angle addition we know, and then using cosine rule to find side
.
\begin{align*} \frac{55\sqrt{3}}{98}=\cos{(30-2x)} \\ \sin{(30-2x)}=\sqrt{1-\cos^2{(30-2x)}}=\frac{23}{98} \\ \cos{(180-2x)}=(-\frac{\sqrt{3}}{2})(\frac{55\sqrt{3}}{98})-(\frac{1}{2})(\frac{23}{98}) \\ \cos{(180-2x)}=-\frac{47}{49} \\ AC^2=14^2+14^2+2\cdot 14\cdot 14\cdot (\frac{47}{49}) \\ AC=\sqrt{768}=16\sqrt3 \\ \end{align*}
We easily find and
(draw a perpendicular down from
to
). What we are trying to find is the area of
, which can be found by adding the areas of
and
. It is trivial that
and
are congruent, so we know that
. What we require is
\begin{align*} \frac{1}{2}(14)(14)(\sin{(180-2x)})+\frac{1}{2}(14)(28\cos{x})(\sin{(120+x)}) \\ \end{align*}
We do similar calculations to obtain that and
implies
, so now we plug in everything we know to calculate the area of the quadrilateral:
\begin{align*} & \frac{1}{2}(14)(14)(\sin{(180-2x)})+\frac{1}{2}(14)(28\cos{x})(\sin{(120+x)}) \\ &=\frac{1}{2}(14)(14)(\frac{8\sqrt{3}}{49})+\frac{1}{2}(14)(16\sqrt{3})(\frac{11}{14}) \\ &=16\sqrt{3}+88\sqrt{3} \\ &=104\sqrt{3} \\ \end{align*}
We see that .
-lisztepos
Remarks
This problem can be approached either by analytic geometry or by trigonometric manipulation. The characteristics of this problem make it highly similar to 2017 AIME I Problem 15 (Link).
See also
2025 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.