Difference between revisions of "2007 AMC 8 Problems/Problem 3"

(Solution)
 
(6 intermediate revisions by 5 users not shown)
Line 4: Line 4:
  
 
<math>\mathrm{(A)}\ 2 \qquad\mathrm{(B)}\ 5 \qquad\mathrm{(C)}\ 7 \qquad\mathrm{(D)}\ 10 \qquad\mathrm{(E)}\ 12</math>
 
<math>\mathrm{(A)}\ 2 \qquad\mathrm{(B)}\ 5 \qquad\mathrm{(C)}\ 7 \qquad\mathrm{(D)}\ 10 \qquad\mathrm{(E)}\ 12</math>
 +
 +
==Video Solution by OmegaLearn==
 +
https://youtu.be/7an5wU9Q5hk?t=272
  
 
== Solution ==
 
== Solution ==
  
The prime factorization of <math>250</math> is <math>2 \cdot 5^3</math>. The smallest two are <math>2</math> and <math>5</math>. <math>2+5 = \boxed{\text{(C) }7</math>.
+
The prime factorization of <math>250</math> is <math>2 \cdot 5^3</math>. The smallest two are <math>2</math> and <math>5</math>. <math>2+5 = \boxed{\text{(C) }7}</math>.
 +
 
 +
==Video Solution by SpreadTheMathLove==
 +
https://www.youtube.com/watch?v=omFpSGMWhFc
 +
 
 +
==Video Solution by WhyMath==
 +
https://youtu.be/_8lDRd1FEd4
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2007|num-b=2|num-a=4}}
 
{{AMC8 box|year=2007|num-b=2|num-a=4}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 16:30, 28 October 2024

Problem

What is the sum of the two smallest prime factors of $250$?

$\mathrm{(A)}\ 2 \qquad\mathrm{(B)}\ 5 \qquad\mathrm{(C)}\ 7 \qquad\mathrm{(D)}\ 10 \qquad\mathrm{(E)}\ 12$

Video Solution by OmegaLearn

https://youtu.be/7an5wU9Q5hk?t=272

Solution

The prime factorization of $250$ is $2 \cdot 5^3$. The smallest two are $2$ and $5$. $2+5 = \boxed{\text{(C) }7}$.

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=omFpSGMWhFc

Video Solution by WhyMath

https://youtu.be/_8lDRd1FEd4

See Also

2007 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png