Difference between revisions of "1957 AHSME Problems/Problem 44"

(created solution page)
 
(Solution)
Line 19: Line 19:
  
 
== Solution ==
 
== Solution ==
<math>\boxed{\textbf{(E) }15^{\circ}}</math>.
+
Because <math>\triangle ACD</math> is [[Isosceles triangle|isosceles]] with <math>AC=CD</math>, <math>\measuredangle CAD=\measuredangle CDA=\theta</math>, where <math>\theta</math> is some angle measure. Because <math>\angle CDA</math> and <math>\angle ADB</math> form a [[straight angle]], <math>\measuredangle ADB = 180^{\circ}-\theta</math>. Thus, because the interior angles of a triangle add to <math>180^{\circ}</math>, <math>\measuredangle BAD + \measuredangle ABC = \theta</math>, so <math>\measuredangle ABC = \theta - \measuredangle BAD</math>. Notice that <math>\measuredangle CAB = \theta + \measuredangle BAD</math>. With all of this information and recalling that, from the problem, <math>\measuredangle CAB - \measuredangle ABC = 30^{\circ}</math>, we see that:
 +
\begin{align*}
 +
\measuredangle CAB - \measuredangle ABC &= 30^{\circ} \\
 +
\theta + \measuredangle BAD - (\theta - \measuredangle BAD) &= 30^{\circ} \\
 +
2\measuredangle BAD &= 30^{\circ} \\
 +
\measuredangle BAD &= 15^{\circ}
 +
\end{align*}
 +
Thus, our answer is <math>\boxed{\textbf{(E) }15^{\circ}}</math>.
  
 
== See Also ==
 
== See Also ==

Revision as of 10:30, 27 July 2024

Problem

In $\triangle ABC, AC = CD$ and $\angle CAB - \angle ABC = 30^\circ$. Then $\angle BAD$ is:

[asy] defaultpen(linewidth(.8pt)); unitsize(2.5cm); pair A = origin; pair B = (2,0); pair C = (0.5,0.75); pair D = midpoint(C--B); draw(A--B--C--cycle); draw(A--D); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,N); label("$D$",D,NE);[/asy]

$\textbf{(A)}\ 30^\circ\qquad\textbf{(B)}\ 20^\circ\qquad\textbf{(C)}\ 22\frac{1}{2}^\circ\qquad\textbf{(D)}\ 10^\circ\qquad\textbf{(E)}\ 15^\circ$

Solution

Because $\triangle ACD$ is isosceles with $AC=CD$, $\measuredangle CAD=\measuredangle CDA=\theta$, where $\theta$ is some angle measure. Because $\angle CDA$ and $\angle ADB$ form a straight angle, $\measuredangle ADB = 180^{\circ}-\theta$. Thus, because the interior angles of a triangle add to $180^{\circ}$, $\measuredangle BAD + \measuredangle ABC = \theta$, so $\measuredangle ABC = \theta - \measuredangle BAD$. Notice that $\measuredangle CAB = \theta + \measuredangle BAD$. With all of this information and recalling that, from the problem, $\measuredangle CAB - \measuredangle ABC = 30^{\circ}$, we see that: \begin{align*} \measuredangle CAB - \measuredangle ABC &= 30^{\circ} \\ \theta + \measuredangle BAD - (\theta - \measuredangle BAD) &= 30^{\circ} \\ 2\measuredangle BAD &= 30^{\circ} \\ \measuredangle BAD &= 15^{\circ} \end{align*} Thus, our answer is $\boxed{\textbf{(E) }15^{\circ}}$.

See Also

1957 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 43
Followed by
Problem 45
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png