Difference between revisions of "1957 AHSME Problems/Problem 12"

(made into an actual page)
m (link change)
 
(One intermediate revision by the same user not shown)
Line 10: Line 10:
  
 
== Solution ==
 
== Solution ==
<math>\boxed{\textbf{(C)}}</math>
+
By the rules of [[exponentiation|exponents]], <math>10^{-49}=10*10^{-50}</math>, which clearly exceeds <math>2*10^{-50}</math>. <math>10^{-49}-2*10^{-50}=10*10^{-50}-2*10^{-50}=8*10^{-50}</math>, so we choose answer choice <math>\boxed{\textbf{(C)}}</math>.
  
 
==See Also==
 
==See Also==

Latest revision as of 08:15, 25 July 2024

Problem 12

Comparing the numbers $10^{-49}$ and $2\cdot 10^{-50}$ we may say:

$\textbf{(A)}\ \text{the first exceeds the second by }{8\cdot 10^{-1}}\qquad\\  \textbf{(B)}\ \text{the first exceeds the second by }{2\cdot 10^{-1}}\qquad\\  \textbf{(C)}\ \text{the first exceeds the second by }{8\cdot 10^{-50}}\qquad\\  \textbf{(D)}\ \text{the second is five times the first}\qquad\\  \textbf{(E)}\ \text{the first exceeds the second by }{5}$

Solution

By the rules of exponents, $10^{-49}=10*10^{-50}$, which clearly exceeds $2*10^{-50}$. $10^{-49}-2*10^{-50}=10*10^{-50}-2*10^{-50}=8*10^{-50}$, so we choose answer choice $\boxed{\textbf{(C)}}$.

See Also

1957 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png