Difference between revisions of "1995 AHSME Problems/Problem 12"

(Solution)
(See also)
Line 9: Line 9:
  
 
==See also==
 
==See also==
 
+
{{Old AMC12 box|year=1995|num-b=11|num-a=13}}
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Revision as of 09:01, 9 January 2008

Problem

Let $f$ be a linear function with the properties that $f(1) \leq f(2), f(3) \geq f(4),$ and $f(5) = 5$. Which of the following is true?


$\mathrm{(A) \ f(0) < 0 } \qquad \mathrm{(B) \ f(0) = 0 } \qquad \mathrm{(C) \ f(1) < f(0) < f( - 1) } \qquad \mathrm{(D) \ f(0) = 5 } \qquad \mathrm{(E) \ f(0) > 5 }$

Solution

A linear function has the property that $f(a)\leq f(b)$ either for all a<b, or for all b<a. Since $f(3)\geq f(4)$, $f(1)\geq f(2)$. Since $f(1)\leq f(2)$, $f(1)=f(2)$. And if $f(a)=f(b)$ for a≠b, then f(x) is a constant function. Since $f(5)=5$, $f(0)=5\Rightarrow \mathrm{(D)}$

See also

1995 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions