Difference between revisions of "2007 AMC 8 Problems/Problem 10"

(Made the solution more direct and formatted.)
 
Line 24: Line 24:
  
 
~savannahsolver
 
~savannahsolver
 
+
==Video Solution by SpreadTheMathLove==
 +
https://www.youtube.com/watch?v=omFpSGMWhFc
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2007|num-b=9|num-a=11}}
 
{{AMC8 box|year=2007|num-b=9|num-a=11}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 14:54, 2 July 2024

Problem

For any positive integer $n$, define $\boxed{n}$ to be the sum of the positive factors of $n$. For example, $\boxed{6} = 1 + 2 + 3 + 6 = 12$. Find $\boxed{\boxed{11}}$ .

$\textbf{(A)}\ 13 \qquad \textbf{(B)}\ 20 \qquad \textbf{(C)}\ 24 \qquad \textbf{(D)}\ 28 \qquad \textbf{(E)}\ 30$

Solution

We have \begin{align*} \boxed{\boxed{11}}&=\boxed{1+11} \\ &=\boxed{12} \\ &=1+2+3+4+6+12 \\ &=28, \end{align*} from which the answer is $\boxed{\textbf{(D)}\ 28}.$

~Aplus95 (Fundamental Logic)

~MRENTHUSIASM (Reconstruction)

Video Solution by WhyMath

https://youtu.be/Ih8lEBwPqEY

~savannahsolver

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=omFpSGMWhFc

See Also

2007 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png