Difference between revisions of "2023 AMC 12A Problems/Problem 24"
(→Solution 2) |
|||
Line 22: | Line 22: | ||
Lastly, we get <math>K\equiv\textstyle\sum\limits_{i=1}^{10}f(10,i)\equiv\boxed{\textbf{(C) } 5}\pmod{10}</math>. | Lastly, we get <math>K\equiv\textstyle\sum\limits_{i=1}^{10}f(10,i)\equiv\boxed{\textbf{(C) } 5}\pmod{10}</math>. | ||
~Quantum-Phantom | ~Quantum-Phantom | ||
+ | |||
+ | ==Solution 3 (Cheese) == | ||
+ | Since the question only wants mod 10 of the answer, we can cheese this problem. | ||
+ | Let <math>b_n</math> be the number of elements of the set <math>a_n</math>. Assume that <math>b_k\neq0</math> and <math>b_k\neq10</math> for any <math>k</math>. However, that means by symmetry, there will be <math>\binom{10}{k}</math> different sequences of <math>a</math> with the same sequence of <math>b</math>. Since <math>\binom{10}{k}</math> is 0 mod 10 for all <math>k</math> except for 0 and 10, we only consider sequences where each term is either the empty set or the entire set <math>{1,2,\cdots,10}</math>. If <math>n=1</math>, then there are <math>2</math> sets. If <math>n=2</math>, then there are <math>3</math> sets, and so on. So the answer is <math>2+3+\cdots{}+11=65==5</math> (mod 10). | ||
==Video Solution 1 by OmegaLearn== | ==Video Solution 1 by OmegaLearn== |
Revision as of 12:43, 10 November 2023
Contents
Problem
Let be the number of sequences , , , such that is a positive integer less than or equal to , each is a subset of , and is a subset of for each between and , inclusive. For example, , , , , is one such sequence, with .What is the remainder when is divided by ?
Solution 1
Consider any sequence with terms. Every 10 number has such choices: never appear, appear the first time in the first spot, appear the first time in the second spot… and appear the first time in the th spot, which means every number has choices to show up in the sequence. Consequently, for each sequence with length , there are possible ways.
Thus, the desired value is
~bluesoul
Solution 2
Let be the number of sequences , , , such that each is a subset of , and is a subset of for , , . Then and .
If and , we need to get a recursive formula for : If , then has possibilities, and the subsequence has possibilities. Hence By applying this formula and only considering modulo , we get , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , .
Lastly, we get . ~Quantum-Phantom
Solution 3 (Cheese)
Since the question only wants mod 10 of the answer, we can cheese this problem. Let be the number of elements of the set . Assume that and for any . However, that means by symmetry, there will be different sequences of with the same sequence of . Since is 0 mod 10 for all except for 0 and 10, we only consider sequences where each term is either the empty set or the entire set . If , then there are sets. If , then there are sets, and so on. So the answer is (mod 10).
Video Solution 1 by OmegaLearn
See also
2023 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.