Difference between revisions of "2023 AMC 12A Problems/Problem 15"
Pi is 3.14 (talk | contribs) |
(→Solution 1) |
||
Line 7: | Line 7: | ||
==Solution 1== | ==Solution 1== | ||
− | By "unfolding" line APQRS into a straight line, we get a right triangle ABS. | + | By "unfolding" line <math>APQRS</math> into a straight line, we get a right angled triangle <math>ABS</math>. |
<math>cos(\theta)=\frac{120}{100}</math> | <math>cos(\theta)=\frac{120}{100}</math> | ||
<math>\theta=\boxed{\textbf{(A) } cos^-1(\frac{5}{6})}</math> | <math>\theta=\boxed{\textbf{(A) } cos^-1(\frac{5}{6})}</math> | ||
− | |||
==Video Solution 1 by OmegaLearn== | ==Video Solution 1 by OmegaLearn== |
Revision as of 22:51, 9 November 2023
Question
Usain is walking for exercise by zigzagging across a -meter by -meter rectangular field, beginning at point and ending on the segment . He wants to increase the distance walked by zigzagging as shown in the figure below . What angle will produce in a length that is meters? (This figure is not drawn to scale. Do not assume that he zigzag path has exactly four segments as shown; there could be more or fewer.)
Solution 1
By "unfolding" line into a straight line, we get a right angled triangle .
Video Solution 1 by OmegaLearn
See also
2023 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 14 |
Followed by Problem 16 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.