Difference between revisions of "2021 AMC 12B Problems/Problem 16"

m (Solution 2 (Vieta's bash))
m (Solution 4)
 
(22 intermediate revisions by 14 users not shown)
Line 4: Line 4:
 
<math>\textbf{(A) }\frac{1+a+b+c}c \qquad \textbf{(B) }1+a+b+c \qquad \textbf{(C) }\frac{1+a+b+c}{c^2}\qquad \textbf{(D) }\frac{a+b+c}{c^2} \qquad \textbf{(E) }\frac{1+a+b+c}{a+b+c}</math>
 
<math>\textbf{(A) }\frac{1+a+b+c}c \qquad \textbf{(B) }1+a+b+c \qquad \textbf{(C) }\frac{1+a+b+c}{c^2}\qquad \textbf{(D) }\frac{a+b+c}{c^2} \qquad \textbf{(E) }\frac{1+a+b+c}{a+b+c}</math>
  
==Solution==
+
==Solution 1==
 
Note that <math>f(1/x)</math> has the same roots as <math>g(x)</math>, if it is multiplied by some monomial so that the leading term is <math>x^3</math> they will be equal. We have
 
Note that <math>f(1/x)</math> has the same roots as <math>g(x)</math>, if it is multiplied by some monomial so that the leading term is <math>x^3</math> they will be equal. We have
 
<cmath>f(1/x) = \frac{1}{x^3} + \frac{a}{x^2}+\frac{b}{x} + c</cmath>
 
<cmath>f(1/x) = \frac{1}{x^3} + \frac{a}{x^2}+\frac{b}{x} + c</cmath>
Line 15: Line 15:
 
Let the three roots of <math>f(x)</math> be <math>d</math>, <math>e</math>, and <math>f</math>. (Here e does NOT mean 2.7182818...)
 
Let the three roots of <math>f(x)</math> be <math>d</math>, <math>e</math>, and <math>f</math>. (Here e does NOT mean 2.7182818...)
 
We know that <math>a=-(d+e+f)</math>, <math>b=de+ef+df</math>, and <math>c=-def</math>, and that <math>g(1)=1-\frac{1}{d}-\frac{1}{e}-\frac{1}{f}+\frac{1}{de}+\frac{1}{ef}+\frac{1}{df}-\frac{1}{def}</math> (Vieta's). This is equal to <math>\frac{def-de-df-ef+d+e+f-1}{def}</math>, which equals <math>\boxed{(\textbf{A}) \frac{1+a+b+c}{c}}</math>. -dstanz5
 
We know that <math>a=-(d+e+f)</math>, <math>b=de+ef+df</math>, and <math>c=-def</math>, and that <math>g(1)=1-\frac{1}{d}-\frac{1}{e}-\frac{1}{f}+\frac{1}{de}+\frac{1}{ef}+\frac{1}{df}-\frac{1}{def}</math> (Vieta's). This is equal to <math>\frac{def-de-df-ef+d+e+f-1}{def}</math>, which equals <math>\boxed{(\textbf{A}) \frac{1+a+b+c}{c}}</math>. -dstanz5
 +
 +
==Solution 3 (Fakesolve) ==
 +
 +
Because the problem doesn't specify what the coefficients of the polynomial actually are, we can just plug in any arbitrary polynomial that satisfies the constraints. Let's take <math>f(x) = (x+5)^3 = x^3+15x^2+75x+125</math>. Then <math>f(x)</math> has a triple root of <math>x = -5</math>. Then <math>g(x)</math> has a triple root of <math>-\frac{1}{5}</math>, and it's monic, so <math>g(x) = \left(x+\frac{1}{5}\right)^3 = \frac{125x^3+75x^2+15x+1}{125}</math>. We can see that this is <math>\frac{1+a+b+c}{c}</math>, which is answer choice <math>\boxed{(A)}</math>.
 +
 +
-Darren Yao
 +
 +
==Solution 4==
 +
 +
If we let <math>p, q, </math> and <math>r</math> be the roots of <math>f(x)</math>, <math>f(x) = (x-p)(x-q)(x-r)</math> and <math>g(x) = \left(x-\frac{1}{p}\right)\left(x-\frac{1}{q}\right)\left(x-\frac{1}{r}\right)</math>. The requested value, <math>g(1)</math>, is then
 +
<cmath>\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)\left(1-\frac{1}{r}\right) = \frac{(p-1)(q-1)(r-1)}{pqr}</cmath>
 +
The numerator is <math>-f(1)</math> (using the product form of <math>f(x)</math> ) and the denominator is <math>-c</math>, so the answer is
 +
<cmath>\frac{f(1)}{c} = \boxed{(\textbf{A}) \frac{1+a+b+c}{c}}</cmath>
 +
 +
- gting
 +
 +
==Solution 5 (Good at Guessing)==
 +
The function <math>g(1) = \text{sum of coefficients}</math>. If it's <math>(x-r)(x-s)(x-t)</math>, then it becomes <math>(x-\dfrac{1}{r})(x-\dfrac{1}{s})(x-\dfrac{1}{t}).</math>
 +
So, <math>-rst</math> becomes <math>-\dfrac{1}{rst}</math>, so <math>c</math> becomes <math>\dfrac{1}{c}</math>. Also, there is a <math>x^3</math> so the answer must include <math>1</math>. The only answer having both of these is <math>A</math>.
 +
 +
~smellyman
 +
 +
-Extremelysupercooldude (Minor Latex Edits and Grammar)
 +
 +
==Solution 6==
 +
It is well known that reversing the order of the coefficients of a polynomial turns each root into its corresponding reciprocal. Thus, a polynomial with the desired roots may be written as <math>cx^3+bx^2+a+1</math>. As the problem statement asks for a monic polynomial, our answer is <cmath>\boxed{(\textbf{A}) \frac{1+a+b+c}{c}}</cmath>
 +
 +
 +
==Video Solution (🚀Under 2 min 🚀)==
 +
https://youtu.be/vPw6VxuZvQU
 +
 +
<i>~Education, the Study of Everything</i>
 +
 +
== Video Solution by OmegaLearn ==
 +
https://youtu.be/M4Ffhp9NLKY?t=923
 +
 +
~ pi_is_3.14
 +
 +
==Video Solution by Punxsutawney Phil==
 +
https://youtube.com/watch?v=vCEJzhDRUoU
  
 
== Video Solution by OmegaLearn (Vieta's Formula) ==
 
== Video Solution by OmegaLearn (Vieta's Formula) ==
 
https://youtu.be/afrGHNo_JcY
 
https://youtu.be/afrGHNo_JcY
  
~ pi_is_3.14
+
==Video Solution by Hawk Math==
 +
https://www.youtube.com/watch?v=p4iCAZRUESs
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2021|ab=B|num-b=15|num-a=17}}
 
{{AMC12 box|year=2021|ab=B|num-b=15|num-a=17}}
 +
 +
[[Category:Intermediate Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 09:02, 1 October 2023

Problem

Let $g(x)$ be a polynomial with leading coefficient $1,$ whose three roots are the reciprocals of the three roots of $f(x)=x^3+ax^2+bx+c,$ where $1<a<b<c.$ What is $g(1)$ in terms of $a,b,$ and $c?$

$\textbf{(A) }\frac{1+a+b+c}c \qquad \textbf{(B) }1+a+b+c \qquad \textbf{(C) }\frac{1+a+b+c}{c^2}\qquad \textbf{(D) }\frac{a+b+c}{c^2} \qquad \textbf{(E) }\frac{1+a+b+c}{a+b+c}$

Solution 1

Note that $f(1/x)$ has the same roots as $g(x)$, if it is multiplied by some monomial so that the leading term is $x^3$ they will be equal. We have \[f(1/x) = \frac{1}{x^3} + \frac{a}{x^2}+\frac{b}{x} + c\] so we can see that \[g(x) = \frac{x^3}{c}f(1/x)\] Therefore \[g(1) = \frac{1}{c}f(1) = \boxed{\textbf{(A) }\frac{1+a+b+c}c}\]

Solution 2 (Vieta's bash)

Let the three roots of $f(x)$ be $d$, $e$, and $f$. (Here e does NOT mean 2.7182818...) We know that $a=-(d+e+f)$, $b=de+ef+df$, and $c=-def$, and that $g(1)=1-\frac{1}{d}-\frac{1}{e}-\frac{1}{f}+\frac{1}{de}+\frac{1}{ef}+\frac{1}{df}-\frac{1}{def}$ (Vieta's). This is equal to $\frac{def-de-df-ef+d+e+f-1}{def}$, which equals $\boxed{(\textbf{A}) \frac{1+a+b+c}{c}}$. -dstanz5

Solution 3 (Fakesolve)

Because the problem doesn't specify what the coefficients of the polynomial actually are, we can just plug in any arbitrary polynomial that satisfies the constraints. Let's take $f(x) = (x+5)^3 = x^3+15x^2+75x+125$. Then $f(x)$ has a triple root of $x = -5$. Then $g(x)$ has a triple root of $-\frac{1}{5}$, and it's monic, so $g(x) = \left(x+\frac{1}{5}\right)^3 = \frac{125x^3+75x^2+15x+1}{125}$. We can see that this is $\frac{1+a+b+c}{c}$, which is answer choice $\boxed{(A)}$.

-Darren Yao

Solution 4

If we let $p, q,$ and $r$ be the roots of $f(x)$, $f(x) = (x-p)(x-q)(x-r)$ and $g(x) = \left(x-\frac{1}{p}\right)\left(x-\frac{1}{q}\right)\left(x-\frac{1}{r}\right)$. The requested value, $g(1)$, is then \[\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)\left(1-\frac{1}{r}\right) = \frac{(p-1)(q-1)(r-1)}{pqr}\] The numerator is $-f(1)$ (using the product form of $f(x)$ ) and the denominator is $-c$, so the answer is \[\frac{f(1)}{c} = \boxed{(\textbf{A}) \frac{1+a+b+c}{c}}\]

- gting

Solution 5 (Good at Guessing)

The function $g(1) = \text{sum of coefficients}$. If it's $(x-r)(x-s)(x-t)$, then it becomes $(x-\dfrac{1}{r})(x-\dfrac{1}{s})(x-\dfrac{1}{t}).$ So, $-rst$ becomes $-\dfrac{1}{rst}$, so $c$ becomes $\dfrac{1}{c}$. Also, there is a $x^3$ so the answer must include $1$. The only answer having both of these is $A$.

~smellyman

-Extremelysupercooldude (Minor Latex Edits and Grammar)

Solution 6

It is well known that reversing the order of the coefficients of a polynomial turns each root into its corresponding reciprocal. Thus, a polynomial with the desired roots may be written as $cx^3+bx^2+a+1$. As the problem statement asks for a monic polynomial, our answer is \[\boxed{(\textbf{A}) \frac{1+a+b+c}{c}}\]


Video Solution (🚀Under 2 min 🚀)

https://youtu.be/vPw6VxuZvQU

~Education, the Study of Everything

Video Solution by OmegaLearn

https://youtu.be/M4Ffhp9NLKY?t=923

~ pi_is_3.14

Video Solution by Punxsutawney Phil

https://youtube.com/watch?v=vCEJzhDRUoU

Video Solution by OmegaLearn (Vieta's Formula)

https://youtu.be/afrGHNo_JcY

Video Solution by Hawk Math

https://www.youtube.com/watch?v=p4iCAZRUESs

See Also

2021 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png