Difference between revisions of "2006 AMC 12A Problems/Problem 21"
(added link to previous and next problem) |
m (→Problem) |
||
(12 intermediate revisions by 7 users not shown) | |||
Line 2: | Line 2: | ||
Let | Let | ||
− | |||
<math>S_1=\{(x,y)|\log_{10}(1+x^2+y^2)\le 1+\log_{10}(x+y)\}</math> | <math>S_1=\{(x,y)|\log_{10}(1+x^2+y^2)\le 1+\log_{10}(x+y)\}</math> | ||
− | |||
and | and | ||
− | |||
<math>S_2=\{(x,y)|\log_{10}(2+x^2+y^2)\le 2+\log_{10}(x+y)\}</math>. | <math>S_2=\{(x,y)|\log_{10}(2+x^2+y^2)\le 2+\log_{10}(x+y)\}</math>. | ||
Line 15: | Line 12: | ||
== Solution == | == Solution == | ||
Looking at the constraints of <math>S_1</math>: | Looking at the constraints of <math>S_1</math>: | ||
+ | |||
+ | <math> x+y > 0 </math> | ||
<math>\log_{10}(1+x^2+y^2)\le 1+\log_{10}(x+y)</math> | <math>\log_{10}(1+x^2+y^2)\le 1+\log_{10}(x+y)</math> | ||
Line 30: | Line 29: | ||
<math> (x-5)^2 + (y-5)^2 \le (7)^2 </math> | <math> (x-5)^2 + (y-5)^2 \le (7)^2 </math> | ||
− | <math>S_1</math> is a circle with a radius of <math>7</math>. So, the area of <math>S_1</math> is <math>49\pi</math>. | + | <math>S_1</math> is a circle with a radius of <math>7</math>. So, the area of <math>S_1</math> is <math>49\pi </math>. |
Looking at the constraints of <math>S_2</math>: | Looking at the constraints of <math>S_2</math>: | ||
− | <math>\log_{10}(2+x^2+y^2)\le | + | <math> x+y > 0 </math> |
+ | |||
+ | <math>\log_{10}(2+x^2+y^2)\le 2+\log_{10}(x+y)</math> | ||
<math> \log_{10}(2+x^2+y^2)\le \log_{10} 100 +\log_{10}(x+y)</math> | <math> \log_{10}(2+x^2+y^2)\le \log_{10} 100 +\log_{10}(x+y)</math> | ||
Line 48: | Line 49: | ||
<math> (x-50)^2 + (y-50)^2 \le (7\sqrt{102})^2 </math> | <math> (x-50)^2 + (y-50)^2 \le (7\sqrt{102})^2 </math> | ||
− | <math>S_2</math> is a circle with a radius of <math>7\sqrt{102}</math>. So, the area of <math>S_2</math> is <math>4998\pi</math>. | + | <math>S_2</math> is a circle with a radius of <math>7\sqrt{102}</math>. So, the area of <math>S_2</math> is <math>4998\pi </math>. |
− | So the desired ratio is <math> \frac{4998\pi}{49\pi} = 102 \Rightarrow E </math> | + | So the desired ratio is <math> \frac{4998\pi}{49\pi} = 102 \Rightarrow \boxed{E} </math>. |
== See also == | == See also == | ||
− | + | {{AMC12 box|year=2006|ab=A|num-b=20|num-a=22}} | |
− | + | {{MAA Notice}} | |
− | + | ||
+ | [[Category:Introductory Algebra Problems]] |
Latest revision as of 16:35, 17 September 2023
Problem
Let and .
What is the ratio of the area of to the area of ?
Solution
Looking at the constraints of :
is a circle with a radius of . So, the area of is .
Looking at the constraints of :
is a circle with a radius of . So, the area of is .
So the desired ratio is .
See also
2006 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.