Difference between revisions of "2006 Cyprus MO/Lyceum/Problem 7"

(Problem)
Line 4: Line 4:
 
</div>
 
</div>
  
In the figure, <math>AB\Gamma</math> is an equilateral triangle and <math>A\Delta \perp B\Gamma</math>, <math>\Delta E\perp A\Gamma</math>, <math>EZ\perp BC</math>. If <math>EZ=\sqrt{3}</math>, then the length of the side of the triangle <math>AB\Gamma</math> is
+
In the figure, <math>AB\Gamma</math> is an equilateral triangle and <math>A\Delta \perp B\Gamma</math>, <math>\Delta E\perp A\Gamma</math>, <math>EZ\perp B\Gamma</math>. If <math>EZ=\sqrt{3}</math>, then the length of the side of the triangle <math>AB\Gamma</math> is
  
 
A. <math>\frac{3\sqrt{3}}{2}</math>
 
A. <math>\frac{3\sqrt{3}}{2}</math>

Revision as of 21:19, 17 October 2007

Problem

2006 CyMO-7.PNG

In the figure, $AB\Gamma$ is an equilateral triangle and $A\Delta \perp B\Gamma$, $\Delta E\perp A\Gamma$, $EZ\perp B\Gamma$. If $EZ=\sqrt{3}$, then the length of the side of the triangle $AB\Gamma$ is

A. $\frac{3\sqrt{3}}{2}$

B. $8$

C. $4$

D. $3$

E. $9$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2006 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30