Difference between revisions of "2022 AMC 10A Problems/Problem 25"

(Solution)
Line 13: Line 13:
  
 
~KingRavi
 
~KingRavi
 +
 +
== See Also ==
 +
 +
{{AMC12 box|year=2022|ab=A|num-b=23|num-a=25}}
 +
{{AMC10 box|year=2022|ab=A|num-b=23|num-a=25}}
 +
{{MAA Notice}}

Revision as of 15:08, 12 November 2022

Problem 25

Let $R$, $S$, and $T$ be squares that have vertices at lattice points (i.e., points whose coordinates are both integers) in the coordinate plane, together with their interiors. The bottom edge of each square is on the x-axis. The left edge of $R$ and the right edge of $S$ are on the $y$-axis, and $R$ contains $\frac{9}{4}$ as many lattice points as does $S$. The top two vertices of $T$ are in $R \cup S$, and $T$ contains $\frac{1}{4}$ of the lattice points contained in $R \cup S$. See the figure (not drawn to scale).

P252022A.png

The fraction of lattice points in $S$ that are in $S \cap T$ is 27 times the fraction of lattice points in $R$ that are in $R \cap T$. What is the minimum possible value of the edge length of $R$ plus the edge length of $S$ plus the edge length of $T$?

$\textbf{(A) }336\qquad\textbf{(B) }337\qquad\textbf{(C) }338\qquad\textbf{(D) }339\qquad\textbf{(E) }340$

Solution

Solution in progress

~KingRavi

See Also

2022 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png