Difference between revisions of "2006 AMC 12A Problems/Problem 16"

m (Solution)
(Solution)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
{{duplicate|[[2006 AMC 12A Problems|2006 AMC 12A #16]] and [[2006 AMC 10A Problems/Problem 23|2006 AMC 10A #23]]}}
 
{{duplicate|[[2006 AMC 12A Problems|2006 AMC 12A #16]] and [[2006 AMC 10A Problems/Problem 23|2006 AMC 10A #23]]}}
 +
 
== Problem ==
 
== Problem ==
[[Circle]]s with [[center]]s <math>A</math> and <math>B</math> have [[radius |radii]] 3 and 8, respectively. A [[common internal tangent line | common internal tangent]] [[intersect]]s the circles at <math>C</math> and <math>D</math>, respectively. [[Line]]s <math>AB</math> and <math>CD</math> intersect at <math>E</math>, and <math>AE=5</math>. What is <math>CD</math>?
+
Circles with centers <math>A</math> and <math>B</math> have radius 3 and 8, respectively. A [[common internal tangent line | common internal tangent]] intersects the circles at <math>C</math> and <math>D</math>, respectively. Lines <math>AB</math> and <math>CD</math> intersect at <math>E</math>, and <math>AE=5</math>. What is <math>CD</math>?
 +
 
 +
<asy>
 +
unitsize(2.5mm);
 +
defaultpen(fontsize(10pt)+linewidth(.8pt));
 +
dotfactor=3;
 +
 
 +
pair A=(0,0), Ep=(5,0), B=(5+40/3,0);
 +
pair M=midpoint(A--Ep);
 +
pair C=intersectionpoints(Circle(M,2.5),Circle(A,3))[1];
 +
pair D=B+8*dir(180+degrees(C));
 +
 
 +
dot(A);
 +
dot(C);
 +
dot(B);
 +
dot(D);
 +
draw(C--D);
 +
draw(A--B);
 +
draw(Circle(A,3));
 +
draw(Circle(B,8));
  
<math>\mathrm{(A) \ } 13\qquad\mathrm{(B) \ } \frac{44}{3}\qquad\mathrm{(C) \ } \sqrt{221}\qquad\mathrm{(D) \ } \sqrt{255}\qquad\mathrm{(E) \ } \frac{55}{3}\qquad</math>  
+
label("$A$",A,W);
 +
label("$B$",B,E);
 +
label("$C$",C,SE);
 +
label("$E$",Ep,SSE);
 +
label("$D$",D,NW);
 +
</asy>
  
[[Image:2006_AMC12A-16.png]]
+
<math>\textbf{(A) } 13\qquad\textbf{(B) } \frac{44}{3}\qquad\textbf{(C) } \sqrt{221}\qquad\textbf{(D) } \sqrt{255}\qquad\textbf{(E) } \frac{55}{3}\qquad</math>
  
 
== Solution ==
 
== Solution ==
 
[[Image:2006_AMC12A-16a.png]]
 
[[Image:2006_AMC12A-16a.png]]
  
<math>\angle AED</math> and <math>\angle BEC</math> are vertical angles so they are [[congruent (geometry) | congruent]], as are [[angle]]s <math>\angle ADE</math> and <math>\angle BCE</math> (both are [[right angle]]s because the radius and [[tangent line]] at a point on a circle are always [[perpendicular]]). Thus, <math>\triangle ACE \sim \triangle BDE</math>.
+
<math>\angle AED</math> and <math>\angle BEC</math> are vertical angles so they are congruent, as are angles <math>\angle ADE</math> and <math>\angle BCE</math> (both are right angles because the radius and [[tangent line]] at a point on a circle are always perpendicular). Thus, <math>\triangle ACE \sim \triangle BDE</math>.
By the [[Pythagorean Theorem]], [[line segment]] <math>DE = 4</math>.  The sides are [[proportion]]al, so <math>\frac{DE}{AD} = \frac{CE}{BC} \Rightarrow \frac{4}{3} = \frac{CE}{8}</math>. This makes <math>CE = \frac{32}{3}</math> and <math>CD = CE + DE = 4 + \frac{32}{3} = \frac{44}{3} \Longrightarrow \mathrm{B}</math>.
+
By the [[Pythagorean Theorem]], line segment <math>DE = 4</math>.  The sides are proportional, so <math>\frac{DE}{AD} = \frac{CE}{BC} \Rightarrow \frac{4}{3} = \frac{CE}{8}</math>. This makes <math>CE = \frac{32}{3}</math> and <math>CD = CE + DE = 4 + \frac{32}{3} = \boxed{\textbf{(B) }\frac{44}{3}}</math>.
  
 
== See also ==
 
== See also ==

Latest revision as of 09:16, 19 December 2021

The following problem is from both the 2006 AMC 12A #16 and 2006 AMC 10A #23, so both problems redirect to this page.

Problem

Circles with centers $A$ and $B$ have radius 3 and 8, respectively. A common internal tangent intersects the circles at $C$ and $D$, respectively. Lines $AB$ and $CD$ intersect at $E$, and $AE=5$. What is $CD$?

[asy] unitsize(2.5mm); defaultpen(fontsize(10pt)+linewidth(.8pt)); dotfactor=3;  pair A=(0,0), Ep=(5,0), B=(5+40/3,0); pair M=midpoint(A--Ep); pair C=intersectionpoints(Circle(M,2.5),Circle(A,3))[1]; pair D=B+8*dir(180+degrees(C));  dot(A); dot(C); dot(B); dot(D); draw(C--D); draw(A--B); draw(Circle(A,3)); draw(Circle(B,8));  label("$A$",A,W); label("$B$",B,E); label("$C$",C,SE); label("$E$",Ep,SSE); label("$D$",D,NW); [/asy]

$\textbf{(A) } 13\qquad\textbf{(B) } \frac{44}{3}\qquad\textbf{(C) } \sqrt{221}\qquad\textbf{(D) } \sqrt{255}\qquad\textbf{(E) } \frac{55}{3}\qquad$

Solution

2006 AMC12A-16a.png

$\angle AED$ and $\angle BEC$ are vertical angles so they are congruent, as are angles $\angle ADE$ and $\angle BCE$ (both are right angles because the radius and tangent line at a point on a circle are always perpendicular). Thus, $\triangle ACE \sim \triangle BDE$. By the Pythagorean Theorem, line segment $DE = 4$. The sides are proportional, so $\frac{DE}{AD} = \frac{CE}{BC} \Rightarrow \frac{4}{3} = \frac{CE}{8}$. This makes $CE = \frac{32}{3}$ and $CD = CE + DE = 4 + \frac{32}{3} = \boxed{\textbf{(B) }\frac{44}{3}}$.

See also

2006 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png